Question

A 18 kg block with a pulley attached slides along a frictionless surface. It is connected by a massless string to a 5.5 kg block via the arrangement shown. The acceleration of gravity is 9.81 m/s 2 . Find the horizontal distance the 18kg block moves when the 5.5 kg block descends a distance of 11.4 cm. The pulleys are massless and frictionless. Answer in units of cm. Find the acceleration of the 18 kg block. Answer in units of m/s 2 . Find the tension in the connecting string. Answer in units of N.

18 kg 5.5 kg

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Approach used:- here we use Newton's laws of motion to solve the equations for acceleration and tension in the string.MA - 18 annd a 2. Vm 5. 71cm-hom zonhal distance 18 eauahons Omo m AaA 2. ACA 24 28 N - tension in the Shing***************************************************************************************************
This concludes the answers. If there is any mistake, let me know immediately and I will fix it....

Add a comment
Know the answer?
Add Answer to:
A 18 kg block with a pulley attached slides along a frictionless surface. It is connected...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A 20 kg block with a pulley attached slides along a frictionless ledge. It is connected...

    A 20 kg block with a pulley attached slides along a frictionless ledge. It is connected by a massless string to a 5 0 kg block via lire arrangement shown in Figure. draw complete free body diagrams for the masses and Find the acceleration of each block and the tension in be connecting string.

  • 3. A 5.00 kg block rests on a level frictionless surface and is attached by a...

    3. A 5.00 kg block rests on a level frictionless surface and is attached by a light string to an 7.00 kg hanging mass where the string passes over a massless, frictionless pulley. Ifg=9.80 m/s, what is the tension in the connecting string? 4. A light string connects a 16 kg mass and a 4.0 kg mass over a massless, frictionless pulley. (a) If g= 9.8 m/s, what is the acceleration of the system when released? (b) What is the...

  • Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to...

    Q2)) A block of mass m= 4 kg slides down a frictionless plane inclined 30° to the horizontal . The block is connected to other block ( moving vertically) of mass m2= 1kg by massless string through a rough pulley (with moment of ineria I= 12 mR", m= 2kg and R=0.5 m) as shown in the fig. a) Find the acceleration of the blocks. b) Find the acceleration of the pulley. c) Find the tension in the string . 30

  • In the figure, two 5.60 kg blocks are connected by a massless string over a pulley...

    In the figure, two 5.60 kg blocks are connected by a massless string over a pulley of radius 2.20 cm and rotational inertia 7.40 times 10^-4 kg-m^2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 1.00 rad in 179 ms and the acceleration of the blocks is constant. What...

  • In the figure, two 5.10 kg blocks are connected by a massless string over a pulley...

    In the figure, two 5.10 kg blocks are connected by a massless string over a pulley of radius 2.50 cm and rotational inertia 7.40 x 10-4 kg.m2. The string does not slip on the pulley; it is not known whether there is friction between the table and the sliding block; the pulley's axis is frictionless. When this system is released from rest, the pulley turns through 0.600 rad in 109 ms and the acceleration of the blocks is constant. What...

  • 2) A massless string across a massless, frictionless pulley connects block of mass 5.35 kg, to...

    2) A massless string across a massless, frictionless pulley connects block of mass 5.35 kg, to block B, of mass 4.27 kg. Block A lies on a smooth ce and block B hangs straight down from the pulley. Block B falls and block A moves across the horizontal surface. Find a) the acceleration of the blocks and b) the tension in the string.

  • A 4.0 kg box is on a frictionless 35° slope and is connected via a massless...

    A 4.0 kg box is on a frictionless 35° slope and is connected via a massless string over a massless, frictionless pulley to a hanging 2.0 kg weight. What is the acceleration (magnitude and direction) of the 2.0 kg block as the blocks are moving?

  • In the figure below, two blocks are connected over a pulley. The mass of block A...

    In the figure below, two blocks are connected over a pulley. The mass of block A is 22 kg 3. and the coefficient of kinetic friction between A and the incline is i* =028. The mass of block B is 18 kg. Angle 0 is 30°. The system is prepared at rest but it starts moving as soon as it is released Frictionless massless pulley Assume that The system is subject to the regular force of gravity. The connecting rope...

  • A mass m, = 6.9 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 =2.4 kg that hangs freely.

     A mass m, = 6.9 kg rests on a frictionless table. It is connected by a massless and frictionless pulley to a second mass m2 =2.4 kg that hangs freely. 1) What is the magnitude of the acceleration of block 1? 2) What is the tension in the string?3)  Now the table is tilted at an angle of 9= 79' with respect to the vertical. Find the magnitude of the new acceleration of block 1. 4) At what “critical" angle will the blocks NOT...

  • A 29.3 kg block m1 is on a horizontal surface, connected to a 5.70 kg block...

    A 29.3 kg block m1 is on a horizontal surface, connected to a 5.70 kg block m2by a massless string as shown in the Figure. The pulley is massless and frictionless. A force of 203.3 N acts on m1 at an angle of 29.7o. The coefficient of kinetic friction between m1 and the surface is 0.225. Determine the upward acceleration of m2. ml m2

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT