Question

3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings of the equipment are shown below Generator G: 100 MVA, 11 kV, Xi -X2-0.20 pu, Xo -0.05 pu Generator G2 : 100 MVA, 20 kV, Xi=X2=0.25 pu, Xo=0.03 pu, X,,-0.05 pu Transformer T: 100 MVA, 11/66 kV, Xi -X2-Xo 0.06 pu Transformer T2: 100 MVA, 11/66 kV, Xi-X2 = Xo 0.06 pu Line: 100 MVA, X,-X2 = 0.15 pu, Xo = 0.65 pu A single line-to-ground, line-to-line, and double line-to-ground fault occur at bus 3. Find the fault currents in each case

Fig. 3.51 A single-line diagram of a power system Bus 4 Line Ti T2 G2

0 0
Add a comment Improve this question Transcribed image text
✔ Recommended Answer
Answer #1

T2 2 JSO M VA,一ㄨ巨左ー015 pu Xo :0.spu -ALhL

039-326 W 06 Fs fout at Bus mpedane dia Chium 10 0.06 12 200 01469 dana ㄩ mm 201823458799101 14 15 16171819 ㄻ 21 22 23 24 26 FRIDAY FEBRUARY WK 06 040-325 09 0 66 +0 AS Hom- CL Pet ot in ou 리讶14t 32 20 1816 17 18 19 u 21 22 2 29 30 3 SATURDAY FEBRUARY 041-324 WK 06 at n 10 12 0.9988 6-014 201012 131415161718 2122 2425 RUTWTFSSMTWT 18 MONDAY FEBRUARY W 07 043 322 12 5261.216 AT ー Ti)? Fot lim-to line fault at bus③ ai Va Ea ta 12.932 b 2. 882 X -1211.848 A 2018044-321·WK 07 o double in 4 NVa 10、Hbgt 90146511701459) ー1 10231-954. A 18

Add a comment
Know the answer?
Add Answer to:
3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y...

    A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn 0.05 per unit on the motor base. Assume that Pre-fault voltage is takin as VF-1.0 ,0° per unit and Pre- fault load current and Δ-Y transformer phase shift are neglected In the...

  • 3) The single-line diagram of a three-phase power system is shown in Fig. 1. Equipment ratings...

    3) The single-line diagram of a three-phase power system is shown in Fig. 1. Equipment ratings are given as follows: G1 1,000 MVA, 15.0 kV, 20.18, o 0.07 pu G2 : 1,000 MVA. 15.0 kV, 攻=エ1 =エ2 = 0.20, ro = 0.10 pu G3 : 500 MVA, 13.8 kV. 1" = 띠 z2 = 0.15, zo 0.05 pu G4 : 750 MVA, 13.8 kV. ェd =ェ1 = 0.30, T2 = 0.40 ro = 0.10 pu Ti : 1,000 MVA. 15.0Δ/765Y...

  • The single-line diagram of a three-phase power system is shown. Equipment ratings are given as follows

    The single-line diagram of a three-phase power system is shown. Equipment ratings are given as follows: The inductor connected to generator 3 neutral has a reactance of \(0.05\) pu using generator 3 ratings as a base.1. Draw the zero-, positive-, and negative -sequence  reactance diagrams using a \(1000 \mathrm{MVA}, 765 \mathrm{kV}\) base in the zone of line \(1-2\).2. Faults at bus 2 are of interest. Determine the Thevenin equivalent of each sequence network as viewed from the fault bus. Prefault voltage...

  • Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are...

    Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are as follows: Generator G1: 750 MVA, 18 kV, X0.2 per unit Generator G2: 750 MVA, 18 kV, X 0.2 per unit Synchronous Motor M: 1,500 MVA, 20 kV, X-20% A-Y Transformers Ti, T2, T's, & T.: 750 MVA, 500 kV Y/20 kV A, X = 10% Y-Y Transformer T's 1,500 MVA, 500 kV Y/20 kV Y, X-10% ne L:X (a) Using bases of 100...

  • 2. A single-line diagram of the power system considered is shown in Figure P2a, where negative-...

    2. A single-line diagram of the power system considered is shown in Figure P2a, where negative- and zero-sequence reactances are also given. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn = 0.05 per unit on the motor base. The per-unit zero-, positive and negative-sequence networks on a 100-MVA is shown in Figure P26, 13.8-kV base in the zone of the generator. a. Reduce the sequence networks to their...

  • QUESTION 4. A single-line diagram of a power system is shown in Figure Q3 below, where...

    QUESTION 4. A single-line diagram of a power system is shown in Figure Q3 below, where negative and zero-sequence reactances are also given. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance X.=0.05 per unit on the motor base. Prefault voltage is VF1.05<Oº per unit whereas prefault load current is zero. Take A-Y transformer phase shifts into consideration. M Line tool X, - X2 - 200 100 MVA X =...

  • The component parameters for the power system shown in Figure 2 are given in Table 1. The pre-fau...

    The component parameters for the power system shown in Figure 2 are given in Table 1. The pre-fault voltage is 120° pu and Zx-j0.1 pu. Table 1 Ratings X2-Xi (pu)Xo (pu) 0.05 0.10 0.20 0.20 Components G1, G2 200 MVA, 20 kV 0.10 0.10 0.10 0.10 T1, T2, T3200 MVA, 20/200 kV L1 200 MVA, 200 kV し2 200 MVA, 20 kV (a) Draw the three sequence networks and determine the per-unit Thevenin impedance of each sequence network seen from...

  • 1) Consider the power system shown in Fig. 1. Use a power base of 500 MVA...

    1) Consider the power system shown in Fig. 1. Use a power base of 500 MVA to calculate the fault current in amperes for a double line-to-ground fault at bus B. G: 500 MVA, 13.8 kv, xa = 0.2 p.M., X2 = 0.2 p.j. and x = 0.1 p.u. G2:600 MVA, 26 kv, xa = 0.15 p.u., X2 = 0.15 p.u. and X, = 0.1 p.u. G3:400 MVA, 13.8 kv, x, = 0.2 p.u., x2 = 0.2 p.u. and x...

  • Power System

     A simple three-phase power system is shown in Figure 2. Assume that the ratings of the various devices in this system are as follows: • Generators G1, G2: 40 MVA, 13.2 kV, = 0.15 pu, = 0.15 pu, = 0.08 • Generator G3: 60 MVA, 13.8 kV, = 0.20 pu, 0.20 pu, - 0.08 • Transformers T1, T2, T3, T4: 40 MVA, 13.8/138 kV, X1 = X2 = 0.10 pu, XO 0.08 pu Transformers T5, T6: 30 MVA, 13.8/138 kV, X1 = X2...

  • Figure 1 Single line diagram b2 b3 b1 b4 grid Τι 13 A power system single line diagram is shown...

    Figure 1 Single line diagram b2 b3 b1 b4 grid Τι 13 A power system single line diagram is shown in Figure 1. The single line diagram shows a synchronous generator G connected to a large 50 Hz grid via its unit transformer T and a network of three transmission lines. Relevant details of the grid, transformer, generator and overhead lines are provided in Tables I,II,II & IV respectively. A double line to ground fault occurs at bus 3 Questions....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT