Question

3) The single-line diagram of a three-phase power system is shown in Fig. 1. Equipment ratings are given as follows: G1 1,000

0 0
Add a comment Improve this question Transcribed image text
Answer #1

o 18 P. u . xo : о.top, u 13.8 IS 75D 13.8 IST ST2 SD0 Base Zrmpedande 여 Tat ng mission line 2. loasge 100 0 SB5.23 A13 2 Kg :40 0‘068 3 5 P4 535 23 385.23 2-3 X13ooo.IO JO ,25%2 1 10, 1709 j0846 10 I46 Jo 237 10-10 Io,lo 2) Pey) unit positive sewende notuoogic 10.06835 024 o lo 40 08S4 4

Add a comment
Know the answer?
Add Answer to:
3) The single-line diagram of a three-phase power system is shown in Fig. 1. Equipment ratings...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings...

    3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings of the equipment are shown below Generator G: 100 MVA, 11 kV, Xi -X2-0.20 pu, Xo -0.05 pu Generator G2 : 100 MVA, 20 kV, Xi=X2=0.25 pu, Xo=0.03 pu, X,,-0.05 pu Transformer T: 100 MVA, 11/66 kV, Xi -X2-Xo 0.06 pu Transformer T2: 100 MVA, 11/66 kV, Xi-X2 = Xo 0.06 pu Line: 100 MVA, X,-X2 = 0.15 pu, Xo = 0.65 pu A...

  • Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are...

    Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are as follows: Generator G1: 750 MVA, 18 kV, X0.2 per unit Generator G2: 750 MVA, 18 kV, X 0.2 per unit Synchronous Motor M: 1,500 MVA, 20 kV, X-20% A-Y Transformers Ti, T2, T's, & T.: 750 MVA, 500 kV Y/20 kV A, X = 10% Y-Y Transformer T's 1,500 MVA, 500 kV Y/20 kV Y, X-10% ne L:X (a) Using bases of 100...

  • Power System

     A simple three-phase power system is shown in Figure 2. Assume that the ratings of the various devices in this system are as follows: • Generators G1, G2: 40 MVA, 13.2 kV, = 0.15 pu, = 0.15 pu, = 0.08 • Generator G3: 60 MVA, 13.8 kV, = 0.20 pu, 0.20 pu, - 0.08 • Transformers T1, T2, T3, T4: 40 MVA, 13.8/138 kV, X1 = X2 = 0.10 pu, XO 0.08 pu Transformers T5, T6: 30 MVA, 13.8/138 kV, X1 = X2...

  • A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y...

    A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn 0.05 per unit on the motor base. Assume that Pre-fault voltage is takin as VF-1.0 ,0° per unit and Pre- fault load current and Δ-Y transformer phase shift are neglected In the...

  • the single-line diagram of a three-phase power system is shown in figure 9.17. equipment ratings are...

    the single-line diagram of a three-phase power system is shown in figure 9.17. equipment ratings are given as follows: The inductor connected to Generator 3 neutral has a reactance of 0.05 per unit using generator 3 ratings as a base. Draw the zero-, positive-, and negative-sequence reactance diagrams using a 1000-MVA, 765-kV base in the zone of line 1-2. Neglect the Δ—Y. transformer phase shifts.

  • The single-line diagram of a three-phase power system is shown. Equipment ratings are given as follows

    The single-line diagram of a three-phase power system is shown. Equipment ratings are given as follows: The inductor connected to generator 3 neutral has a reactance of \(0.05\) pu using generator 3 ratings as a base.1. Draw the zero-, positive-, and negative -sequence  reactance diagrams using a \(1000 \mathrm{MVA}, 765 \mathrm{kV}\) base in the zone of line \(1-2\).2. Faults at bus 2 are of interest. Determine the Thevenin equivalent of each sequence network as viewed from the fault bus. Prefault voltage...

  • Assuming there is a FAULT at BUS 3, Determine the thevenin equivalent of each series network...

    Assuming there is a FAULT at BUS 3, Determine the thevenin equivalent of each series network as viewed from the fault bus. Given: -Prefault voltage is 1.0 per unit -Prefault load currents and delta-wye transformer phase shifts are neglected Synchronous generators G1 1000 MVA 15 kVX"-X2 0.18, Xo 0.07 per unit G2 1000 MVA 15 kV X: X, = 0.20, X,-0.10 per unit G3 500 MVA 13.8 kV X: X,-0.15, X,-0.05 per unit G4 750 MVA 13.8 kV X,-0.30, X,-0.40,...

  • QUESTION 4. A single-line diagram of a power system is shown in Figure Q3 below, where...

    QUESTION 4. A single-line diagram of a power system is shown in Figure Q3 below, where negative and zero-sequence reactances are also given. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance X.=0.05 per unit on the motor base. Prefault voltage is VF1.05<Oº per unit whereas prefault load current is zero. Take A-Y transformer phase shifts into consideration. M Line tool X, - X2 - 200 100 MVA X =...

  • 2. A single-line diagram of the power system considered is shown in Figure P2a, where negative-...

    2. A single-line diagram of the power system considered is shown in Figure P2a, where negative- and zero-sequence reactances are also given. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn = 0.05 per unit on the motor base. The per-unit zero-, positive and negative-sequence networks on a 100-MVA is shown in Figure P26, 13.8-kV base in the zone of the generator. a. Reduce the sequence networks to their...

  • The three-phase power and line-line ratings of the electric power system shown in Figure 2 are...

    The three-phase power and line-line ratings of the electric power system shown in Figure 2 are given below T2 2 Line Vm G M 1 BA Figure 2 One-line diagram for problem 2 G: Ti: T2: Line: M: 60 MVA 50 MVA 50 MVA 20 kV 20/200 kV 200/20 kV 200 kV 18 kV X=9% X=10% X=10% Z=120+j2002 X=8% 43.2 MVA (a) Draw an impedance diagram showing all impedances in per unit on a 100-MVA base. Choose 20 kV as...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT