Question

Problem 2 (25 points) In a silicon semiconductor, excess carriers are being generated at x -0 as shown below. Assume NA 2x101

0 0
Add a comment Improve this question Transcribed image text
Answer #1

73 ptype fo た。 rv

Add a comment
Know the answer?
Add Answer to:
Problem 2 (25 points) In a silicon semiconductor, excess carriers are being generated at x -0...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3....

    Problem 4 (25 points) Consider a silicon pn junction at T 300 K, NA ND-1x1016 cm3. The minority carrier lifetimes are τ -0.01 μs and τΡ 0.01 μ. The Junction is forwardbiased with , V,-0.6V. The minority carrier diffusion coefficients are D,-20 cm2/s, D,-10 cm2/s. n, = 1.5x 1010cm -3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minor...

    Problem 3 (25 points) Consider a silicon pn junction at T - 300 K, NA- 1016 cm3, ND-5x1016 cm-3. The minority carrier lifetimes are τα , τ,-1 us. The junction is forward biased with Va-0.5V The minority carrier diffusion coefficients are D 25 cm/s, Da- 10 cm2/s n,1.5x1010 cm3 kT 0.0267 Depletion region p-type n-type a) (5 points) Calculate the excess electron concentration as a function of x in the p-side (see the figure above) b) (10 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

  • Excess electrons as minority carriers are extracted from a bar of p-type silicon having the dimensions...

    Excess electrons as minority carriers are extracted from a bar of p-type silicon having the dimensions shown in Figure 211a. The bar is uniformly doped with an acceptor concentration Na of 10^17 cm^-e. The excess electron concentration has a profile described by 211a. Excess electrons as minority carriers are extracted from a bar of p-type silicon having the dimensions shown in Figure 211a. The bar is uniformly doped with an acceptor concentration Na of 10 cm3. The excess electron concentration...

  • Consider a silicon pn junction at T = 300 K, NA-Np - 4x106cm. The minority carrier...

    Consider a silicon pn junction at T = 300 K, NA-Np - 4x106cm. The minority carrier lifetimes are tn = Tp=1 us. The junction is forward biased with V, -0.6V. The minority carrier diffusion coefficients are D = 20 cm²/s, D = 10 cm²/s. n;= 1.5x100cm, kt/e = 0.026V Depletion region n-type p-type a) (5 points) Do we have low-level injection? b) (10 points) Calculate the electron concentration at x = -(Xp + Ln) where L, is the electron diffusion...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, N,-1x1017 ст?, ND-11016 Cm -, The minority carrier lifetimes are τ u-^ 1 μs and τ p-1 μs. The minority carrier diffusion coefficients...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, N,-1x1017 ст?, ND-11016 Cm -, The minority carrier lifetimes are τ u-^ 1 μs and τ p-1 μs. The minority carrier diffusion coefficients are Da-25 cm2/s, DR-10 cm2/s. n1-1.5x1010 cm -3 kT - 0.026V Low-level injection is defined to be when the minority carrier concentration at the edge of the space charge region becomes equal to one-tenth the majority carrier concentration. Determine the value of the voltage across...

  • Q3. (25 points) A p-type (NA-1018 cm silicon slab of finite length L is in the...

    Q3. (25 points) A p-type (NA-1018 cm silicon slab of finite length L is in the dark, with diffusive current flow only, under steady-state conditions. Significant improvements have been made, such that essentially no recombination occurs in the slab (r~oo). At x 0 the electron concentration is maintained (by injection from a contact) at 10 cm3. Atx L the excess electrons are extracted such that Anp(L) 0. i) Write the appropriate minority carrier diffusion equation. (ii) Solve to determine the...

  • An important application of PN diodes is their use as photodetectors. The optical radiation creates electron-hole...

    An important application of PN diodes is their use as photodetectors. The optical radiation creates electron-hole pairs in the depletion region and regions within the diffusion lengths near the depletion edges. These e-h pairs are collected as a photocurrent. The e-h pairs are generated at the rate GL 1022 cm-3s1. Calculate the photocurrent. Consider a silicon PN diode at 300K with following parameters Equation for photocurrent calculation: AGL (W Ln Lp) A 104 um2 Na = 2 x 1016 cm-3...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT