Question

b) Find the maximum velocity of the 0°C and get stuck there. As a (2 pts) mass. the c) (2 pts) Find the ice at 6. A 2.0 g bullet at 30 0C is fired at 200 m/s at a large block of result of this, some, but not of the ice melts. a) pt) hat is the final temperature of bullet? v in meters, of the mass in a spring-mass system, kg K
0 0
Add a comment Improve this question Transcribed image text
Answer #1

OC. Co)

Add a comment
Know the answer?
Add Answer to:
Find the maximum Find the maximum velocity of the mass. A 2.0 g bullet at 30...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg...

    A bullet of mass 2.0×10−3 kg embeds itself in a wooden block with mass 0.996 kg , which then compresses a spring (k = 120 N/m ) by a distance 4.5×10−2 m before coming to rest. The coefficient of kinetic friction between the block and table is 0.49. A) What is the initial speed of the bullet? B) What fraction of the bullet's initial kinetic energy is dissipated (in damage to the wooden block, rising temperature, etc.) in the collision...

  • A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds...

    A rifle bullet with mass 7.00 g and initial horizontal velocity 290 m/s strikes and embeds itself in a block with mass 0.993 kg that rests on a frictionless surface and is attached to one end of an ideal spring. The other end of the spring is attached to the wall. The impact compresses the spring a maximum distance of 14.0 cm . After the impact, the block moves in SHM. Calculate the period of its motion

  • wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet re...

    wooden block with mass M 3 kg is lying on a horizontal table and is attached to a spring in its equilibrium position. It is hit by a bullet with mass m 5 g which moves horizontally. The bullet remains in the block after colliding with it. The block moves on the table compressing the spring, with spring constant k 50 Nm, a distance 10 cm. The coefficient of kinetic friction uk 0.2. a) Find the elastic energy stored in...

  • PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g...

    PROBLEM 2 (5 points). Momentum and Mechanical Energy conservation A rifle bullet with mass 150 g strikes and embeds itself in a block with mass 1000 g that rests on a frictionless, horizontal surface and is attached to a coil spring. The initial velocity of the bullet was 700 m/s. The impact compresses the springy a distance x. The spring constant is 550 N/m. The spring is ideal. a) Find the magnitude of the block's velocity (with the bullet stuck...

  • A heavy bullet of mass m = 0.1200 kg is fired with an initial velocity v...

    A heavy bullet of mass m = 0.1200 kg is fired with an initial velocity v = 400. m/s into a large block of lightweight wood of mass M = 0.500 kg, which is initially at rest on a frictionless surface. This initial situation is depicted on the left side of the picture below. The bullet gets stuck inside of the wood block and both move together thereafter as shown in the picture. a) What is the velocity V of...

  • Answer plz A bullet with mass 20 grams and velocity 100 m/s collides with a wooden...

    Answer plz A bullet with mass 20 grams and velocity 100 m/s collides with a wooden block of mass 2 kg. The wooden block is initially at rest, and is connected to a spring with k = 800 N/m. The other end of the spring is attached to an immovable wall. What is the maximum compression of the spring?

  • a.) What is the velocity V of the bullet-block system? b.) What is the initial velocity...

    a.) What is the velocity V of the bullet-block system? b.) What is the initial velocity of the bullet? c.) If the horizontal surface has a coefficient of kinetic friction μk= 0.500, what is the maximum compression of the spring? An 8.0-9 bullet is shot into a 5.0-kg block, at rest on a frictionless horizontal surface (see the figure). The bullet remains lodged in the block and the bullet-block system moves to the right with speed V. The bullet-block system...

  • An ice cube of mass 8.5 g at temperature 0∘C is added to a cup of...

    An ice cube of mass 8.5 g at temperature 0∘C is added to a cup of coffee, whose temperature is 90 ∘C and which contains 130 g of liquid. Assume the specific heat capacity of the coffee is the same as that of water. The heat of fusion of ice (the heat associated with ice melting) is 6.0 kJ/mol. Find the temperature of the coffee after the ice melts.(in C)

  • 5. A bullet of mass m-0.02 kg was horizontally shot into a wood block of mass...

    5. A bullet of mass m-0.02 kg was horizontally shot into a wood block of mass mo 8.98 kg, which is attached at one end of a spring with a spring constant k = 100 N/m, as shown in right Figure. After the bullet was embedded into the wood block, the spring was compressed 10 cm. If the coefficient of kinetic friction is 0.2 between the wood block and the surface, find the initial velocity of the bullet. (10 points)

  • hello please A 40-g block of ice is cooled to -78.0 degree C and then added...

    hello please A 40-g block of ice is cooled to -78.0 degree C and then added to 560-g of water in an 80-g copper calorimeter at a temperature of 25.0 degree C. Determine the final temperature of the system consisting of the ice, water, and calorimeter (if not all the ice melts, determine how much ice is left). Remember that the ice must first warm to 0 degree C, melt and then continue warming as water. The specific heat of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT