Question

The Na –glucose symport system of intestinal epithelial cells couples the "downhill" transport of two Na...

The Na –glucose symport system of intestinal epithelial cells couples the "downhill" transport of two Na ions into the cell to the "uphill" transport of glucose, pumping glucose into the cell against its concentration gradient. If the Na concentration outside the cell ([Na+]out) is 163 mM and that inside the cell ([Na+]in) is 17.0 mM, and the cell potential is -53.0 mV (inside negative), calculate the maximum ratio of [glucose]in to [glucose]out that could theoretically be produced if the energy coupling were 100% efficient. Assume the temperature is 37 °C.

\frac{[glucose]_{in}}{[glucose]_{out}}=

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The Na –glucose symport system of intestinal epithelial cells couples the "downhill" transport of two Na...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The Na –glucose symport system of intestinal epithelial cells couples the \"downhill\" transport of two Na...

    The Na –glucose symport system of intestinal epithelial cells couples the \"downhill\" transport of two Na ions into the cell to the \"uphill\" transport of glucose, pumping glucose into the cell against its concentration gradient. If the Na concentration outside the cell ([Na ]out) is 155 mM and that inside the cell ([Na ]in) is 17.0 mM, and the cell potential is -53.0 mV (inside negative), calculate the maximum ratio of [glucose]in to [glucose]out that could theoretically be produced if...

  • The Nat-glucose symport system of intestinal epithelial cells couples the "downhill" transport of two Nat ions...

    The Nat-glucose symport system of intestinal epithelial cells couples the "downhill" transport of two Nat ions into the cell to the "uphill" transport of glucose, pumping glucose into the cell against its concentration gradient. If the Na concentration outside the cell (Na lout) is 153 mM and that inside the cell ([Nalinis 19.0 mm, and the cell potential is -53.0 mV (inside negative), calculate the maximum ratio of (glucoseJin to (glucoseJout that could theoretically be produced if the energy coupling...

  • 5/2400 Resources Give Up Hint Intestinal epithelial cells pump glucose into the cell against its concentration grad...

    5/2400 Resources Give Up Hint Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Nat-glucose symporter. Recall that the Nat concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Nations into the cell to the "uphill" transport of glucose into the cell. If the Na+ concentration outside the cell (INa1.) is 151 mM and that inside the cell ([Na]) is 23.0 mm, and the cell...

  • What more info do you need? This is all I've been provided. 1. Intestinal epithelial cells...

    What more info do you need? This is all I've been provided. 1. Intestinal epithelial cells pump glucose into the cell against its concentration gradient using the Na-glucose symporter. Recall that the Na concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Na' ions into the cell to the "uphill" transport of glucose into the cell. (opts) a. If the Na concentration outside the cell ([Na Jou) is 161 mM...

  • HW 11-1 Recall that the Na + concentration is significantly higher outside the cell than inside...

    HW 11-1 Recall that the Na + concentration is significantly higher outside the cell than inside the cell. The symporter couples the "downhill" transport of two Na + ions into the cell to the "uphill" transport of glucose into the cell. If the Na + concentration outside the cell ( [ Na + ] out ) is 149 mM and that inside the cell ( [ Na + ] in ) is 19.0 mM, and the cell potential is −...

  • The Na glucose symporter transports glucose from the lumen of the small intestine into cells lining...

    The Na glucose symporter transports glucose from the lumen of the small intestine into cells lining the lumen. Transport of 1 glucose molecule is directly coupled to the transport of 2 Nations into the cell. 2 Na*(out) + 1 glucose(out) - 2 Nat(in) + 1 glucose(in) Assume the following conditions at 37 °C: [Nalin - 12 mm, [Na lout = 145 mm, (glucoseJout = 28 pm, and Ay =-72 mV (inside negative). Faraday constant F = 96,485 C/mol, ideal gas...

  • 1. Animal cells have a Na,K pump that couples the energy of ATP hydrolysis to transport 3 Na ions out of the cell and 2 K ions into the cell. Inside astrocytes, the concentration of Na is 20 mM and th...

    1. Animal cells have a Na,K pump that couples the energy of ATP hydrolysis to transport 3 Na ions out of the cell and 2 K ions into the cell. Inside astrocytes, the concentration of Na is 20 mM and the concentration of K is 130 mM. The extracellular concentrations of Na and K are 145 mM and 5 mM, respectively. Calculate the energy required for the transport of Na and K , with this stoichiometry; assume that the cell...

  • 1) Glucose enters human enterocytes (intestinal epithelial cells) against its concentration gradient. A Na+ ion enters...

    1) Glucose enters human enterocytes (intestinal epithelial cells) against its concentration gradient. A Na+ ion enters the cell with each glucose molecule, and while the glucose transporter does not hydrolyze ATP, it depends on a pre-existing gradient of Na+ ions that is created by the Na+/K+ ATPase. This is an example of ____________. A. primary active uniport B. secondary active antiport C. primary active symport D. secondary active symport 2) Which statement is FALSE? A. Acetyl CoA is oxidized to...

  • Imumseinratio that can be 2. Calculate the maximum (glucose]out achieved by the plasma membrane N...

    imumseinratio that can be 2. Calculate the maximum (glucose]out achieved by the plasma membrane Na*-glucose symporter of an epithelial cell when [Na']n 12 mM, [Nalout 145 mM, the membrane potential is -50 mV (inside negative), and the temperature is 37 °C Apical surface Basal surface Intestinal Blood lumen 2 K* Microvili Epithelial cell 3 Na+ Na"K+ ATPas Glucose Glucose Glucose uniporter GLUT2 (facilitates Na -glucose symporter (driven by high extracellular Na I downhill efflux) imumseinratio that can be 2. Calculate...

  • 33) Which of the following is most likely true of a protein that cotransports glucose and...

    33) Which of the following is most likely true of a protein that cotransports glucose and sodium ions into the intestinal cells of an animal? A) Sodium and glucose bind to the same site on the cotransporter. B) Transport of glucose against its concentration gradient provides energy for uptake of sodium ions against the electrochemical gradient. C) Sodium ions can be transported whether or not glucose is present outside the cell, but glucose transport requires cotransport of sodium ions. D)...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT