Question

(4%) Problem 18: An object of height 2.9 cm is placed 29 cm in front of a diverging lens of focal length 15 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length. 50% Part (a) Find the location of the final image, in centimeters beyond the converging lens. 50% Part (b) What is the magnification of the final image? Include its sign to indicate its orientation with respect to the object. G

0 0
Add a comment Improve this question Transcribed image text
Answer #1

02 ver gns 0 X Cam Same did LX vot dutanca S Vano 89- นึ่ 53.VD em ke en= 52、20

Add a comment
Know the answer?
Add Answer to:
(4%) Problem 18: An object of height 2.9 cm is placed 29 cm in front of...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (13%) Problem 5: An object of height 2.9 cm is placed 29 cm in front of...

    (13%) Problem 5: An object of height 2.9 cm is placed 29 cm in front of a diverging lens of focal length 17 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length. - A 50% Part (a) Find the location of the final image, in centimeters beyond the converging lens. Grade Summary Deductions 0% Potential 100% 1 E sin( cos() tan() cotan() asin() acos atan acotan sinh cosh() |...

  • Problem 3: An object of height 2.8 cm is placed 26 cm in front of a...

    Problem 3: An object of height 2.8 cm is placed 26 cm in front of a diverging lens of focal length 16 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length. a) Find the location of the final image, in centimeters beyond the converging lens (such that a negative answer would indicate the final image is on the same side of the converging lens as the object). b) What...

  • An object of height 2.8 cm is placed 27 cm in front of a diverging lens of focal length 16 cm

    An object of height 2.8 cm is placed 27 cm in front of a diverging lens of focal length 16 cm. Behind the diverging lens, and 11 cm from it, there is a converging lens of the same focal length.Part (a) Find the location of the final image, in centimeters beyond the converging lens. Part (b) What is the magnification of the final image? Include its sign to indicate its orientation with respect to the object.

  • (10%) Problem 10: An object of height 2.8 cm is placed 28 cm in front of...

    (10%) Problem 10: An object of height 2.8 cm is placed 28 cm in front of a diverging lens of focal length 16 cm. Behind the diverging lens, and 13 cm from it, there is a converging lens of the same focal length. 25% Part (a) Find the location of the image created by the diverging lens in centimeters relative to the location of that lens. Use the standard sign convention such that your answer will be negative if the...

  • (17%) Problem 9: An object of height 2.2 cm is placed 29 cm in front of...

    (17%) Problem 9: An object of height 2.2 cm is placed 29 cm in front of a diverging lens of focal length 16 cm. Behind the diverging lens, and Il cm from it, there is a converging lens of the same focal length. * 50% Part (a) Find the location of the final image, in centimeters beyond the converging lens. s"= 22.89 Grade Summary Deductions Potential HOME sin cos t an cotan asin) acos atan acotan() sinh Cosh0 tanh) Coanh)....

  • An object of height 3.6 cm is placed at 24 cm in front of a diverging...

    An object of height 3.6 cm is placed at 24 cm in front of a diverging lens of focal length, f = -18 cm. Behind the diverging lens, there is a converging lens of focal length, f = 18 cm. The distance between the lenses is 5 cm. In the next few steps, you will find the location and size of the final image. Where is the intermediate image formed by the first diverging lens? Image distance from first lens...

  • An object of height 3.6 cm is placed at 24 cm in front of a diverging...

    An object of height 3.6 cm is placed at 24 cm in front of a diverging lens of focal length, f = -18 cm. Behind the diverging lens, there is a converging lens of focal length, f = 18 cm. The distance between the lenses is 5 cm. In the next few steps, you will find the location and size of the final image. Where is the intermediate image formed by the first diverging lens? Image distance from first lens...

  • 14%) Problem 4: An object of height 3.3 cm is placed 4.8 cm in front of...

    14%) Problem 4: An object of height 3.3 cm is placed 4.8 cm in front of a converging lens of focal length 23 cm. all parts > 50% Part (a) What is the image distance, in centimeters? Include its sign. Grade Summary Deductions Potential 100 sin cos tan cotan) asino acos atan acotan sinh cosh tanh cotanh Degrees Radians ) 7 8 4 5 1 2 + - 0 VO BACKSPACH 9 6 3 . HOME - - END CLEAR...

  • Use the thin lens equation to solve problems 14 –18. 14. An object is 10 cm...

    Use the thin lens equation to solve problems 14 –18. 14. An object is 10 cm high and is placed 20 cm in front of a converging lens of focal length 20 cm. Determine the image distance, the image height and the magnification. 15. An object is 10 cm high and is placed 16 cm in front of a converging lens of focal length 20 cm. Determine the image distance, the image height and the magnification. 16. An object is...

  • A diverging lens of focal length –30.0 cm is placed 25.0 cm behind a converging lens...

    A diverging lens of focal length –30.0 cm is placed 25.0 cm behind a converging lens of focal length 60.0 cm. A real, upright object of height 2.00 cm is placed 20.0 cm in front of the converging lens. (a) Determine the location of the final image. (Clearly state the location of the final image.) (b) Determine the size and the nature of the final image.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT