Question

The Question The above figure (not drawn to scale) shows a rectangular beam with a depth of d = 32mm and breadth of b = 50mm
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Solution:- TITI 12 Stept:- Calculate second moment of area. I= £bd3 = 50 x (39)&x1042 32 = 1 F_119. I I = 136-53x10-8 m4 anyThanks

Add a comment
Know the answer?
Add Answer to:
The Question The above figure (not drawn to scale) shows a rectangular beam with a depth...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow...

    Figure Q3 shows a simply supported beam carrying a point load. The beam hasa rectangular hollow steel section as shown in Figure Q3. a. Calculate the second moment of area of the section about the horizontal (10 marks) centroidal axis. Calculate the maximum allowable value of the point load Wif the elastic bending (15 marks) b. stress in the beam is to be limited to 250 MPa. c. Calculate the maximum shear stress at q-q in the beam when the...

  • 2. A rectangular beam, 400 x 600 mm gross dimension, is cast using a concrete strength...

    2. A rectangular beam, 400 x 600 mm gross dimension, is cast using a concrete strength of fc 30 MPa, reinforced with 5-25 mm diameter steel bar at the effective depth of 500 mm. If is subjected to a moment, M 130 kN-m. Determine the following: Magnitude of the bending moment that cracks the singly-reinforced beam section. (10 pts) b. For the computed cracking moment, determine the maximum compressive stress in the concrete and the stress in the tension steel....

  • The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate...

    The beam having a cross-section as shown is subjected to the distributed load w (1) Calculate the moment of inertia, I (2) If the allowable maximum normal stress ơmax-20 MPa, determine the largest distributed load 5. w. (3) If w 1.5 kN/m, determine the maximum bending stress in the beam. Sketch the stress distribution acting over the cross-section. 100 mm 50mm 120 mm 3 m50 mm 3 m

  • A beam with a square cross-section is in a combined state of loading. There is an axial force N 350 kN acting in the x-...

    A beam with a square cross-section is in a combined state of loading. There is an axial force N 350 kN acting in the x-direction, a torque T 50 kNm acting about the x-axis, and a bending moment M 40 kNm acting about the z-axis as shown. The side length of the beam is a 15.0 cm. B T a (a) Find the nomal stress due to N and M at points A and B. [10 marks] (b) Find the...

  • A beam may have zero shear stress at a section but may not have zero deflection;...

    A beam may have zero shear stress at a section but may not have zero deflection; Hence, bending is primarily caused by bending moment In Torsion loading a stress element in a circular rod is subject to shear state The principal plane and the plane on which the shear stresses are maximum, they make 90 degree angle between them. If the Torque on a steel circular shaft (G=80 GPa) is 13.3 kN-m and the allowable shear stress is 98 MPa,...

  • The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed...

    The simply-supported beam having I-beam cross-section as shown in figure is to carry a uniformly distributed load over its entire 1.2m length. Specify the maximum allowable load if the beam is made from malleable iron, ASTM A220, class 80002. The allowable tensile stress is 164 MPa and allowable compressive stress is 412 MPa. The centroid of the section is located at 35 mm from the bottom and moment of inertia are Ix = 2.66 x 10 mm". (a) Draw loading...

  • Just G. G) Calculate the maximum bending stress that occurs in the beam. Identify where it...

    Just G. G) Calculate the maximum bending stress that occurs in the beam. Identify where it occurs (both with respect to its length and its cross section) and indicate whether it is in tension or compression. Compare this to the allowable stress for the material. Is the cross section sufficiently strong for the applied load? Centroid Coordinates: (68.57mm, 80.67mm) Ix = 21.1 * 10^6 mm^4 Iy = 115.81 mm^4 Bending Moment at P = 20 kN*m Bending Moment at Q...

  • Learning Goal: The beam shown (Figure 1) is supported by a pin at A and a...

    Learning Goal: The beam shown (Figure 1) is supported by a pin at A and a cable at B. Two loads P = 18 kN are applied straight down from the centerline of the bottom face. Determine the state of stress at the point shown (Figure 2) in a section 2 m from the wall. The dimensions are w = 5.4 cm , h = 12 cm, L = 0.8 m, a = 1.5 cm , and b = 4...

  • A beam of rectangular cross section 200 mm deep and 100 mm wide. If the beam...

    A beam of rectangular cross section 200 mm deep and 100 mm wide. If the beam is 3m long, simply supported at either end and carries point loads as shown in FIGURE 2 (on page 4). 2. SAN 1OAN R, FR 100mm FIG.2 (a) Calculate the maximum bending moment (b) Calculate the maximum stress in the beam (c) At the point of maximum stress sketch a graph of the stress distribution through the thickness of the beam, indicating which are...

  • DE = 29 Question 4: Indeterminate Beam Design and Deflection A 2014-T6 aluminium cantilever beam is...

    DE = 29 Question 4: Indeterminate Beam Design and Deflection A 2014-T6 aluminium cantilever beam is rigidly fixed to a wall and supported at the free end with a roller support, shown below. The beam is loaded with a distributed load, W, of 10kN/m and a point load, P of 55kN. Both the distributed load and the point load act in the direction shown in the image below. Note, the parameter DE is related to your student number as described...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT