Question

Fusion in brief The Future of Fusio linear system is given Ls) - The tranffer function of a simplified below: 60 Folf) 4527 2

0 0
Add a comment Improve this question Transcribed image text
Answer #1

roots of the quafion are Answer: 60 Giren Xels) 2 Folso 48728.85 +324 15 S +1.25 +81 8 . 15 1 88 547.2 5781 The qiven systemШ Imaginary 12 -10- (-3.6, 8,249) 5 -15 -10 -5 0 Real --5 (Е3.6, — 8.249) -10(6 ) Ę : 0.4 It is under damped system because the damping ration f! Given fact: 304 Forssa 30 S 80 Xecsl 60 A8428.95+324 XecNote: A IS A at cosbt 1 L -at sinkt Sta (Stay462 b (staj+62 e § 5.56 (5+ 3.6) 1s (5+36) (GRA) -3-64 (5+3.614 (668.00) tcosIN-1 peak overshool (Mp) : 1000 71X0.4117-0.21% 100 Mp : 25, 383/ steady state Value Xess at sXc (S) SO ht S-0 15 s?+ 7.25781LIII x(t) 6 2 4 Time= X(t) (0.28, 6.273) -6 (0.833, 5.263) FG 2 4 Tiras

Add a comment
Know the answer?
Add Answer to:
Fusion in brief The Future of Fusio linear system is given Ls) - The tranffer function...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Question #4 (25 points): Consider the open loop system that has the following transfer function 1 G(S) = 10s+ 35 Us...

    Question #4 (25 points): Consider the open loop system that has the following transfer function 1 G(S) = 10s+ 35 Using Matlab: a) Plot the step response of the open loop system and note the settling time and steady state 15 pts error. b) Add proportional control K 300 and simulate the step response of the closed loop 15 pts system. Note the settling time, %OS and steady state error. c) Add proportional derivate control Kp 300, Ko 10 and...

  • A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-...

    A unity feedback system with the forward transfer function G)2)(s +5) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input; b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G)2)(s +5) is operating with...

  • Wis) R(s u(s) 14 Gl(s) H(s) Given a system as in the diagram above, where K is an adjustable pa...

    Wis) R(s u(s) 14 Gl(s) H(s) Given a system as in the diagram above, where K is an adjustable parameter pl(s) Dal(sKp+ g) Assuming W-0, find the transfer function Y(s)/R(s) h) Assuming R-0, find the transfer function Y(s)/W(s) i) What is the type of the system (with respect to steady-state error)? j) What is the steady-state error when rt)u(t) (unit-step) and w(t)-0 k) What is the s.s. error when r(t) t u(t) and w(t)-0 ) Assume r(t)-0, what is the...

  • A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with ...

    A unity feedback system with the forward transfer function G (s) = s(s+2)(s15) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the settling time for a unit step input b) Design a PD control to yield a 15% overshoot but with a threefold reduction in settling time; c) Evaluate the settling time, overshoot, and steady-state error with the PD control. A unity feedback system with the forward transfer function G (s) =...

  • Please solve part b and c and d !! Consider the closed loop system shown in...

    Please solve part b and c and d !! Consider the closed loop system shown in Figure 4. The root locus of that system is shown in Figure 5 (s+40s+8) R(s) Y(s) Figure 4 System block diagram of Problem 4 a) On the root locus plot, sketch the region of possible roots of the dominant closed-loop poles such that the system response to a unit step has the following time domain specifications. [5] i. Damping ratio, 20.76 ii. Natural frequency,....

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2b). i Determine the value in so that the damping ratio of the system is 0.5. (1 % marks) From the result obtained in , evaluate the transient response characteristics (rise...

  • I only need MATLAB solution with commands The damping ratio, ^, effects the performance of a...

    I only need MATLAB solution with commands The damping ratio, ^, effects the performance of a system. Using MATLAB, for a single loop second order feedback system, find the step response of the system for values of wn 1 and = 0.1, 0.4, 0.7 , 1.0 and 2.0 E(s) R(s) G(s) Y(s) s(s +2,) Plot all the results in the same figure window and fill in the following table. Rise Time Peak Time % Overshoot Settling Time Steady State Value...

  • Do only parts C and D 1. A second-order system has the following transfer function that...

    Do only parts C and D 1. A second-order system has the following transfer function that describes its response: F(s)- s2 +as + 9 A. For a -3, calculate the following performance specifications of the system: Natural frequency (on) Damping ratio( Estimated rise time and settling time with ±5% change (tr, ts) Estimated overshoot (MP) . B. Label (a) ±5% range of steady state, (b) tr, (c) ts, and (d) MP on the step response curve below (You may also...

  • For the closed-loop system shown, and given: C(s) 8.41 s+8.10 G(8 2 0.02 3.00 2out G(s) C(s) control plant Part A-Plant 1% settling time Find the 1% settling time of the plant G(s) to a unit step inp...

    For the closed-loop system shown, and given: C(s) 8.41 s+8.10 G(8 2 0.02 3.00 2out G(s) C(s) control plant Part A-Plant 1% settling time Find the 1% settling time of the plant G(s) to a unit step input. 15.38 t,3% - Submit X ncorrect; Try Again - Part B Plant: Overshoot Find the overshoot of the plant G(s)to a unit step input. Give your answer as a percentage Mp: | Value Units Submit Request Answer Part C - Closed-loop system:...

  • Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise...

    Question 2 a) Consider the control system in Figure 2(a). Determine the transient response characteristics (rise time, peak time, maximum overshoot and settling time) and the steady state error for the system. (2 marks) b) To improve the relative stability, the tachometer feedback are employed as shown in Figure 2(b). i Determine the value Kso that the damping ratio of the system is 0.5. (1 % marks) i. From the result obtained in (), evaluate the transient response characteristics (rise...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT