Question

4. (a) Find the normal and shear stresses on the plane indicated on the element. (6) Sketch Mohrs circle. (b) Determine the

0 0
Add a comment Improve this question Transcribed image text
Answer #1

لهه OB Plane 8ompa 0=+25° plane AO 120MPa Jy YO MPa Jo = 120MPa 80MPa Tay Yompa let two points on moka cercle be A, B A = (12

Distance between a points queen by re-o)² +92-y,,? r AB = Dia (120-89+(40=(,0))? 407+802 - -- AB = 4055 MPa = 89.49 m Pa = 89

. : 0,= tan / 40 20 Jueen state - major principal plane angle from on plane -> o 0, - tan ( 50,- 63.43 This O, is twice angl

Add a comment
Know the answer?
Add Answer to:
4. (a) Find the normal and shear stresses on the plane indicated on the element. (6)...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • your Consider the element in plane stress as shown below. () (2 points) Draw corresponding Mohr's...

    your Consider the element in plane stress as shown below. () (2 points) Draw corresponding Mohr's circle coordinate axes with appropriate labels, center point A. radius of the circle (1) (3 points) Using the Mohir's circle, find the magnitude of the principal stresses and principal directions. Show them on a sketch of a properly oriented clement (c) (3 points) Using the Mohr's circle, find the magnitude of the maximun shear stress and associated normal stresses Show them on a sketch...

  • 3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa;...

    3. Figure shows a state of plane stress consists of normal stresses 60 MPa and Ly-40MPa; and unknown shear stress, The maximum principal stress was determined to be 104.34 MPa. Using Mohr's cirdle, determine a. the magnitude of the shear stress, b. the principal plane and the minimum principal stress. Then, sketch the element showing all stresses in its proper orientation, c. the maximum shear stress, associated normal stress and the orientation of the element. Then, sketch the element showing...

  • Consider a point in a structural member that is subjected to plane stress. Normal and shear...

    Consider a point in a structural member that is subjected to plane stress. Normal and shear stresse acting on horizontal and vertical planes at the point 8.4 MPa are shown in the figure 44.8 MPa a) Draw Mohr's circle for this state of stress b) Determine the principal stresses and the maximum in- plane shear stress acting at the point. Show these stresses in an appropriate sketch. c) 60.5 MPa

  • Problem 6 (15 points) The state of plane stress at a point is shown on the...

    Problem 6 (15 points) The state of plane stress at a point is shown on the element in Figure 6. a. Using Mohr's circle, determine the principal stresses and the maximum in-plane shear stress and average normal stress. Specify the orientation of the element in each case. b. Represent the state of stress on an element oriented 30° counterclockwise from the position shown in Figure 6. 20 MPa 100 MPa 40 MPa Figure 6 (plot Mohr's circle on the next...

  • Q.4 (25 marks) A material is subjected to two mutually perpendicular direct stresses of 300 MPa...

    Q.4 (25 marks) A material is subjected to two mutually perpendicular direct stresses of 300 MPa tensile and 200 MPa compressive, together with a shear stress of 50 MPa, as shown in the figure below. Use the Mohr's circle to determine: A. The principal stresses and their corresponding principal planes, B. The maximum shear stress and the planes of maximum shear stress, also C. Show the principal stresses calculated above on a sketch of the element D. Determine the state...

  • I need part b please 40 M 45 MP 50 MPA - For the given state...

    I need part b please 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle...

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • 40 M 45 MP 50 MPA - For the given state of stress, Part A: determine...

    40 M 45 MP 50 MPA - For the given state of stress, Part A: determine analytically (using stress transformation equations): 1) the principal planes. 2) the principal stresses. 3) Sketch the stress element for the above condition 4) the orientation of the planes of maximum in-plane shearing stress, 5) the maximum in-plane shearing stress and the corresponding normal stress. 6) Sketch the stress element for the above condition Part B: Only use Mohr's circle to determine 1) the principal...

  • . Consider the element shown. Determine the state of stress with respect to an element oriented 2...

    . Consider the element shown. Determine the state of stress with respect to an element oriented 22.5° CCW with respect to the element shown. (b) Find the principal stresses. (c) Find the principal planes. (d) Find the maximum shear stresses. (e) Find the maximum shear-stress planes. (f Sketch all the above stresses on appropriately oriented 560 kPa 2100 kPa planes using a ray diagram. 300 kPa (g) Draw Mohr's circle for the element and indicate items (a) - (e) on...

  • wise 5. An element in pure shear is subjected to stresses thy 32 MPa, as shown...

    wise 5. An element in pure shear is subjected to stresses thy 32 MPa, as shown in the figure. Using Mohr's circle, determine: (a) The stresses acting on an element oriented at a counterclockwise angle 0 = 75' from the x axis. (b) The principal stresses. Show all results on sketches of property oriented elements. Vertical 3MPa 32 MPa Horizontal

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT