Question

The lens shown above is a O bi-convex diverging lens. bi-convex converging lens. bi-concave diverging lens. Obi-concave conve
Under the sign convention rules for lenses, a negative focal length means that the lens is planar. converging. bifocal. diver
An object is placed 30 cm from a converging lens with a focal length of 20 cm. The image will appear right side up 12 cm from
An object is placed 30 cm from a diverging lens with a focal length of 20 cm. The image will appear right side up 12 cm from
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1) From the lens drawn, it is clear that it is diverging lens and a diverging lens is called bi-concave.

Thus, the answer is:
Bi-concave diverging lens

2) Ans: diverging

Negative focal length is used for diverging lenses.

ریما ) 20cm fi do= 30cm, thin lens equi & 1 1 0 + 4 di using L L I 20 M hu- do 30 real, inated 어 2. di- 60cm 3rd option Simil

Kindly upvote:)

Add a comment
Know the answer?
Add Answer to:
The lens shown above is a O bi-convex diverging lens. bi-convex converging lens. bi-concave diverging lens....
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Mirrors and Lenses O O O O Concave mirror Convex mirror Plane mirror Converging lens Diverging...

    Mirrors and Lenses O O O O Concave mirror Convex mirror Plane mirror Converging lens Diverging lens Focal length (cm): Object distance, x (cm): Object height (cm): Image distance, x' (cm): Image height (cm): 40.0 200.0 50.0 50.0 -12.5 Concept Questions Notes Audio Intro Oo © Question 6 Concept Simulation 25.2 illustrates the concepts pertinent to this problem. A 2.10-cm-high object is situated 13.4 cm in front of a concave mirror that has a radius of curvature of 12.1 cm....

  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -68 cm are 188 cm apart. A 3.1-cm-tall object is 60 cm in front of the converging lens. Calculate the distance between image and diverging lens. Calculate the image height.

  • 2. Two thin lenses, one a converging lens and the other a diverging lens, are arated...

    2. Two thin lenses, one a converging lens and the other a diverging lens, are arated by 1.00 m along the same principal axis, as shown in the figure. The magnitude of the focal length of the converging lens is 25 cm, while the magnitude of the focal length of the diverging lens is 40 em. An object 8,25 cm tall is placed 35 cm to the left of the converging lens. (a) Where is the final image produced by...

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cmare 150 cmapart. A 1.0-cm-tall object is 60 cmin front of the converging lens. Ch 19 HW Problem 19.41 8 of 8 Part A Calculate the image position Express your answer using two significant figures. Constants A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 150 cm...

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 170 cm apart. A 3.0-cm-tall object is 60 cm in front of the converging lens. 1.) Calculate the image position. 2.) Calculate the image height.

  • A converging lens with a focal length of 40 cm and a diverging lens with a...

    A converging lens with a focal length of 40 cm and a diverging lens with a focal length of -40 cm are 160cm apart. A 3.0-cm-tall object is 60 cm in front of the converging lens. Part A Calculate the image position. Part B Calculate the image height.

  • The focal length of a diverging lens is negative. If f = −23 cm for a...

    The focal length of a diverging lens is negative. If f = −23 cm for a particular diverging lens, where will the image be formed of an object located 32 cm to the left of the lens on the optical axis? ______cm to the left of the lens? What is the magnification of the image? b. A small object is placed to the left of a convex lens and on its optical axis. The object is 29 cm from the...

  • A diverging lens with a focal length of -22 cm and a converging lens with a...

    A diverging lens with a focal length of -22 cm and a converging lens with a focal length of 19 cm have a common central axis. Their separation is 19 cm. An object of height 4.0 cm is 10 cm in front of the diverging lens, on the common central axis. Where does the lens combination produce the final image of the object (the one produced by the second, converging lens)? Where is the image located as measured from the...

  • Two systems are formed from a converging lens and a diverging lens, as shown in parts...

    Two systems are formed from a converging lens and a diverging lens, as shown in parts a and b of the drawing. (The point labeled "Fconverging" is the focal point of the converging lens.) An object is placed inside the focal point of lens 1 at a distance of 6.4 cm to the left of lens 1. The focal lengths of the converging and diverging lenses are 15.0 and -20.0 cm respectively. The distance between the lenses is 50.0 cm....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT