Question

QUESTION 2. (a) A portion of a power system consists of two generators in parallel, connected to a step-up transformer that l
0 0
Add a comment Improve this question Transcribed image text
Answer #1

=دمه on 15 MVA: are : Solutions MV Abline) Krbold a) Using Xpuinen) = Xpulold) MvAblold) (kv) snew Reaitances base of Generatpower tran impedance For maximum transfor load Z, should be complexe congregate of Thevenin impedance at bus A. 2th = (1.289

Hai if you find my answer suitable kindly give a thumbs up.Good day to you and thanks

Add a comment
Know the answer?
Add Answer to:
QUESTION 2. (a) A portion of a power system consists of two generators in parallel, connected...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • INTRODUCTION TO POWER SYSTEM

    1. The one-line diagram of a three-pha  se power system is shown in Figure 3.29. Select a common base of 100 MVA and 15 kV on the motor side. Draw an impedance diagram with all impedances including the load impedance marked in per-unit. The manufacturer's data for each device is given as follow:The three-phase load at bus 4 absorbs 57 MVA, 0.6 power factor lagging at 10.45 kV. Line 1 and line 2 have reactances of 48.4 Ω and 65.43...

  • QUESTION 5 a) Define the Per Unit system and list three (3) main reasons of using Per Unit system...

    Per unit calculation QUESTION 5 a) Define the Per Unit system and list three (3) main reasons of using Per Unit systemm. (5 marks) b) A three-bus power with two generator system is shown in figure Q2 (b). The 3-phase power and line-line voltage ratings are given below Ti T2 J40 2 Gi G2 j25 Ω 25 Ω Ty Figure Q2 (b) GI: 750 MVA, 18 kV, X 7% G2: 750 MVA, 18 kV, X-15% Motor: 1500 MVA, 20 kV,...

  • Power System

     A simple three-phase power system is shown in Figure 2. Assume that the ratings of the various devices in this system are as follows: • Generators G1, G2: 40 MVA, 13.2 kV, = 0.15 pu, = 0.15 pu, = 0.08 • Generator G3: 60 MVA, 13.8 kV, = 0.20 pu, 0.20 pu, - 0.08 • Transformers T1, T2, T3, T4: 40 MVA, 13.8/138 kV, X1 = X2 = 0.10 pu, XO 0.08 pu Transformers T5, T6: 30 MVA, 13.8/138 kV, X1 = X2...

  • A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y...

    A single line diagram of a power system is shown in Fig. 2. The system data with equipment ratings and assumed sequence reactances are given the following table. The neutrals of the generator and A-Y transformers are solidly grounded. The motor neutral is grounded through a reactance Xn 0.05 per unit on the motor base. Assume that Pre-fault voltage is takin as VF-1.0 ,0° per unit and Pre- fault load current and Δ-Y transformer phase shift are neglected In the...

  • A 7-bus power system with three generators, six transformers, and seven transmission lines is shown in...

    A 7-bus power system with three generators, six transformers, and seven transmission lines is shown in Figure Q1. The per-unit reactances for the generators and transfomers are based on their rated voltage and expressed in percentage. When a three-phase fault occurs at bus 5; three transmission lines, namely L4, L5, and L6, are disconnected from the power system. By taking the base apparent power of 100 MVA and the rated voltage of generator G1 as the reference, determine the per-unit...

  • Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are...

    Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are as follows: Generator G1: 750 MVA, 18 kV, X0.2 per unit Generator G2: 750 MVA, 18 kV, X 0.2 per unit Synchronous Motor M: 1,500 MVA, 20 kV, X-20% A-Y Transformers Ti, T2, T's, & T.: 750 MVA, 500 kV Y/20 kV A, X = 10% Y-Y Transformer T's 1,500 MVA, 500 kV Y/20 kV Y, X-10% ne L:X (a) Using bases of 100...

  • note that 1) single phase system 2) base values at transmission line circuit A 100 MVA,...

    note that 1) single phase system 2) base values at transmission line circuit A 100 MVA, 12 kV Single-phase generator has a sub transient reactance of 20%. The generator supplies a two synchronous motors over 25-km transmission line having transformers at both ends. The motors, all rated 6.0 kV, 66 MVA and 50 MVA for Mi and M2, respectively. For both motors X" = 15%. The single phase transformer T is rated 150 MVA, 132/12 kV with leakage reactance of...

  • a five bus system

    The equipment ratings for a five bus system are given as Generator G1: 50 MVA, 12 kV, Xd ’’=X2=0.20, X0= 0.10 per unit Generator G2: 100 MVA, 15 kV, Xd ’’=0.2, X2=0.23, X0= 0.10 per unit Transformer T1: 50 MVA, 10 kV (Y)/138 kV (Y), X=0.10 per unit Transformer T1: 100 MVA, 15 kV (∆)/138 kV (Y), X=0.10 per unit Each 138 kV line: X1=40 Ohms, X0=100 ohms (1) Draw out the zero-, positive-, and negative- sequence reactance diagrams for the original system using a 100-MVA,...

  • The one-line diagram of a simple power system is shown in Figure 1. The neutral of...

    The one-line diagram of a simple power system is shown in Figure 1. The neutral of each generator is grounded through a current-limiting reactor of 0.25/3 per unit on a 100-MVA base. The system data expressed in per unit on a common 100-MVA base is tabulated below. The generators are running on no-load at their rated voltage and rated frequency with their emfs in phase. Determine the fault current for the following faults giving Zo = 0.35, Z = 0.22...

  • Transformer TI : 50 MVA, 10 kV Y/138 kV Y, X=0.10 per unit; Transformer T2: 100 MVA, 15 kV D/138 kV Y, X-0.10 per unit; Each 138-kV line: X1-400 A three-phase short circuit occurs at bus 5,...

    Transformer TI : 50 MVA, 10 kV Y/138 kV Y, X=0.10 per unit; Transformer T2: 100 MVA, 15 kV D/138 kV Y, X-0.10 per unit; Each 138-kV line: X1-400 A three-phase short circuit occurs at bus 5, where the prefault voltage is 15 kV. Prefault load current is neglected. (a)Draw the positive-sequence reactance diagram in per-unit on a 100-MVA, 15-kV base in the zone of generator G2. Determine: (b) the The'venin equivalent at the fault, (c) the subtransient fault current...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT