Question

Let \(\left\{\varphi_{n}(x)\right\}\) be an orthogonal set of functions on \([a, b]\) such that \(\psi_{0}(x)=1\) and \(\varphi_{1}(x)=x\), Show that \(\int_{a}^{b}(\alpha x+\beta) \varphi_{n}(x) d x=0\) for \(n=2,3, \ldots\) and any constants \(\alpha\) and \(\beta\),

First we note that \(\alpha x+\beta=(\square) \Phi_{1}(x)+(\square \quad) \Psi_{0}(x)\).

Using this together with the fact that \(\varphi_{0}\) and \(\varphi_{1}\) are orthogonal to \(\varphi_{n}\) for \(n>1\), we have the following.

$$ \begin{aligned} \int_{a}^{b}(\alpha x+\beta) \varphi_{n}(x) d x &=\int_{a}^{b} a x \psi_{n}(x) d x+\int_{a}^{b} \beta \varphi_{n}(x) d x \\ &=\int_{a}^{b}\left(\square_{0}\right) \varphi_{1}(x) \varphi_{n}(x) d x+\int_{a}^{b}\left(\square_{0}\right) \psi_{0}(x) \varphi_{n}(x) d x \\ &=\square \end{aligned} $$


A real-valued function \(f\) is said to be periodic with period \(T \neq 0\) If \(f(x+T)=f(x)\) for all \(x\) in the domain of \(f\). If \(T\) is the smallest positive value for which \(f(x+D)=f(x)\) holds, then \(T\) is called the fundamental period of \(f\). Determine the fundamental period \(T\) of the given function.

$$ f(x)=\sin \left(\frac{10}{L} x\right), L>0 } \\ {T=|\quad|} \end{array} $$

6. (-/1 Points] DETAILS ZILLDIFFEQ9 11.1.016. MY NOTES Let {\,(x)} be an orthogonal set of functions on [a, b] such that f(x)


0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
ZILLDIFFEQ9 11.1.016.
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • help

    Let \((a, \beta) *(-r, \lambda)=(a t-\beta \lambda, a \lambda+\beta r)\)Give \(N\left(-N,(X, y)^{N}\right.\) means \((x, y) \neq(x, y) \times \ldots(x, y) \quad(N\) times \()\)For the set \(S=\left\{\left(\frac{4}{5}, \frac{3}{5}\right)^{N} \mid N=1,2,3 \cdots\right]\) Describe the first few elements in \(S\).2) Describe the operations * \(n\) terms of geometry of the unit circle

  • Consider the heat conduction problem

    5. If \(f(x)=\left\{\begin{array}{cc}0 & -2<x<0 \\ x & 0<x<2\end{array} \quad\right.\)is periodio of period 4 , and whose Fourier series is given by \(\frac{a_{0}}{2}+\sum_{n=1}^{2}\left[a_{n} \cos \left(\frac{n \pi}{2} x\right)+b_{n} \sin \left(\frac{n \pi}{2} x\right)\right], \quad\) find \(a_{n}\)A. \(\frac{2}{n^{2} \pi^{2}}\)B. \(\frac{(-1)^{n}-1}{n^{2} \pi^{2}}\)C. \(\frac{4}{n^{2} \pi^{2}}\)D. \(\frac{2}{n \pi}\)\(\mathbf{E}_{1} \frac{2\left((-1)^{n}-1\right)}{n^{2} \pi^{2}}\)F. \(\frac{4}{n \pi}\)6. Let \(f(x)-2 x-l\) on \([0,2]\). The Fourier sine series for \(f(x)\) is \(\sum_{w}^{n} b_{n} \sin \left(\frac{n \pi}{2} x\right)\), What is \(b, ?\)A. \(\frac{4}{3 \pi}\)B. \(\frac{2}{\pi}\)C. \(\frac{4}{\pi}\)D. \(\frac{-4}{3 \pi}\)E. \(\frac{-2}{\pi}\)F. \(\frac{-4}{\pi}\)7. Let \(f(x)\) be periodic...

  • Solve the integral substitute the value of picture below please i need some help i'm desperate please pleaseI hace a Lot homework

    \(\frac{\mathscr{L}}{\frac{\rho_{\infty} V_{\infty}^{2} c}{2}}=\int_{0}^{\frac{b}{2}}\left(\frac{\partial C_{l}}{\partial \alpha}\left(\alpha-\alpha_{C_{l}=0}\right)+\frac{\partial C_{l}}{\partial \alpha} \varphi(v)-\frac{\partial C_{l}}{\partial \alpha} \frac{\dot{p} v}{V_{\infty}}+\frac{\partial C_{l}}{\partial \beta} \beta \mathscr{U}_{b_{2}}(v)\right) v d v\)substitute this value in the integral and solve:

  • Let X equal the larger outcome when a pair of 6-sided dice are rolled.

    Let X equal the larger outcome when a pair of 6-sided dice are rolled.(a) Assuming the two dice are independent, show that the probability function of \(X\) is \(f(x)=\frac{2 x-1}{36} \quad x=1, \ldots, 6\)(b) Confirm that \(f(x)\) is a probability function.(c) Find the mean of \(X\).(d) Can you generalise \(E(X)\) to a pair of fair \(m\) -sided dice?\(\left[\right.\) Hint: recall that \(\sum_{i=1}^{n} i=n(n+1) / 2\) and \(\left.\sum_{i=1}^{n} i^{2}=n(n+1)(2 n+1) / 6\right]\)

  • Approximating derivatives

    Approximating derivatives$$ \begin{aligned} f^{\prime}(x) & \approx\left(\delta_{+} f\right)(x)=\frac{f(x+h)-f(x)}{h} & \text { Forward difference } \\ f^{\prime}(x) & \approx\left(\delta_{-} f\right)(x)=\frac{f(x)-f(x-h)}{h} & \text { Backward difference } \\ f^{\prime}(x) & \approx(\delta f)(x)=\frac{f(x+h)-f(x-h)}{2 h} & \text { Centered difference for 1st derivative } \\ f^{\prime \prime}(x) & \approx\left(\delta^{2} f\right)(x)=\frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} & \text { Centered difference for 2nd derivative } \end{aligned} $$1. a. Use Taylor's polynomials to derive the centered difference approximation for the first derivative:$$ f^{\prime}(x) \approx \delta f(x)=\frac{f(x+h)-f(x-h)}{2 h}, $$include the error in...

  • 1-Given the function:

    1-Given the function: \(y=\frac{x^{2}-3 x-4}{x^{2}-5 x+4}\), decide if \(f(x)=y\) is continuous or has a removable discontinuity, and find horizontal tond vertical asymptotes.2 A-Use the definition \(\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\) to prove that derivative of \(f(x)=\sqrt{4-x}\) is \(\frac{-1}{2 \sqrt{4-x}}\)2 B- Evaluate the limit \(\lim _{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}\) for the given value of \(x\) and function \(f(x) .\)$$ f(x)=\sin x, \quad x=\frac{\pi}{4} $$3-Given the function: \(y=(x+4)^{3}(x-2)^{2}\), find y' and classify critical numbers very carefully using first derivative tess...

  • Frequency-domain sampling using Fourier series

    Frequency-domain sampling. Consider the following discrete-time signal$$ x(n)= \begin{cases}a^{|n|}, & |n| \leq L \\ 0, & |n|>L\end{cases} $$where \(a=0.95\) and \(L=10\).(a) Compute and plot the signal \(x(n)\).(b) Show that$$ X(\omega)=\sum_{n=-\infty}^{\infty} x(n) e^{-j \omega n}=x(0)+2 \sum_{n-1}^{L} x(n) \cos \omega n $$Plot \(X(\omega)\) by computing it at \(\omega=\pi k / 100, k=0,1, \ldots, 100\).(c) Compute$$ c_{k}=\frac{1}{N} X\left(\frac{2 \pi}{N} K\right), \quad k=0,1, \ldots, N-1 $$for \(N=30\).(d) Determine and plot the signal$$ \tilde{x}(n)=\sum_{k=0}^{N-1} c k e^{j(2 \pi / N) k n} $$What is the...

  • I have the first method complete, but I can't figure out thesecond method. I have...

    I have the first method complete, but I can't figure out the second method Could someone please show how to use the second method?2. Find the unit step response of:$$ \begin{aligned} \dot{\overrightarrow{\mathbf{x}}}(t) &=\left[\begin{array}{cc} 0 & 1 \\ -2 & -2 \end{array}\right] \overrightarrow{\mathbf{x}}(t)+\left[\begin{array}{l} 1 \\ 1 \end{array}\right] u(t) \\ y(t) &=\left[\begin{array}{cc} 2 & 3 \end{array}\right] \overrightarrow{\mathbf{x}}(t) \end{aligned} $$by two methods (1): transfer function and then (2) \(y(t)=\mathbf{C} e^{\mathbf{A} t} \overrightarrow{\mathbf{x}}(0)+\mathbf{C} \int_{0}^{t} e^{\mathbf{A}(t-\tau)} \mathbf{B} u(\tau) d \tau+\mathbf{D} u(t)\). Re-member that the Laplace...

  • Find The Singularities Of The Hyper Geometric Differential Equation (HGDD) In Finite And Infinite Regions

    a) \([x(1-x), \gamma-(1+\alpha+\beta) x,-\alpha \beta]{ }_{2} F_{1}=0\) Hiper Geometrik Diferansiyel Denkleminin (HGDD) sonlu ve sonsuz bölgelerdeki tekilliklerini bulunuz, \(x=0\) etrafinda seri çõzümủnü bularak \(\quad{ }_{2} F_{1}(\alpha, \beta, \gamma ; x)\) çözumünü tesbit ediniz.b) \(x=\beta s\) dönüșumũ yaparak yeni elde edilen diferansiyel denklemde \(\beta \rightarrow \infty^{\prime}\) a gitmesi durumunda sonlu bōlgedeki tekilliklerden birisinin sonsuz bölgeye gittiğini göstererek HGDD'in KHGDD'e dönüştüğũnũ gōsteriniz.c) HGDD'l \(x \rightarrow G(x)\) noktasal dōnüșüm ile genelleștirerek daha sonra invaryant forma sokunuz (yani, IFGHGDD'I bulunuz). Bulacağanız sonuç aşağıdaki formda...

  • (2 points) The area A of the region S that lies under the graph of the...

    (2 points) The area \(A\) of the region \(S\) that lies under the graph of the continuous function \(f\) on the interval \([a, b]\) is the limit of the sum of the areas of approximating rectangles:$$ A=\lim _{n \rightarrow \infty}\left[f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x\right]=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x $$where \(\Delta x=\frac{b-a}{n}\) and \(x_{i}=a+i \Delta x\).The expression$$ A=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{\pi}{8 n} \tan \left(\frac{i \pi}{8 n}\right) $$gives the area of the function \(f(x)=\) on...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT