Question

A potential modified from and infinitely deep well is shown below. It is located at x = 0 and is narrow enough that the wave

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ć let the wave function fos EN be 4. and E2 be 42 EN n => V, - 3 V. 42 E2 زنن FO 20 the potential zero. Then time independentzie) At 4, = 42 and AL i = 42 -0. -- using these boundary conditions, applying general sodeletions, jk, a Wex) Ае. +Bejka 4₂

Add a comment
Know the answer?
Add Answer to:
A potential modified from and infinitely deep well is shown below. It is located at x...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a potential well defined as U(x) =  for x < 0, U(x) = 0 for 0 < x < L, and U(x) = U0 > 0 for x > L (see the following figure).

    Consider a potential well defined as \(U(x)=\infty\) for \(x<0, U(x)=0\)for \(0<x<L,\)and \(U(x)=U_{0}>0\) for \(x>L\) (see the following figure). Consider a particle with mass \(m\) and kinetic energy \(E<U_{0}\)that is trapped in the well. (a) The boundary condition at the infinite wall ( \(x=\)0) is \(\psi(x)=0\). What must the form of the function \(\psi(x)\) for \(0<x<L\)be in order to satisfy both the Schrödinger equation and this boundary condition? (b) The wave function must remain finite as \(x \rightarrow \infty\). What must...

  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

  • question 5, please show all the work/ steps so i can break it down for better...

    question 5, please show all the work/ steps so i can break it down for better understanding studying please, thank you Part B. Now we will repeat the calculation for states of energy E> 1. Write down solutions for the wave function in each of the regions. (use coefficients use coefficient and B) and D ) V should be written in terms of the parameter should be written in terms of the parameter (2 [ 2 E- 2. Apply the...

  • Consider a particle of mass in a 10 finite potential well of height V. the domain...

    Consider a particle of mass in a 10 finite potential well of height V. the domain – a < x < a. a) Show that solutions for – a < x < a take the form on (x) = A cos(knx) for odd n, and on (x) = A sin(knx) for even n. . Show a) Match the boundary conditions at x = a to prove that cos(ka) = Bk where k is the wave vector for -a < x...

  • 1. A particle of mass m moves in the one-dimensional potential: x<-a/2 x>a/2 Sketch the potential....

    1. A particle of mass m moves in the one-dimensional potential: x<-a/2 x>a/2 Sketch the potential. Sketch what the wave functions would look like for α = 0 for the ground state and the 1st excited state. Write down a formula for all of the bound state energies for α = 0 (no derivation necessary). a) b) Break up the x axis into regions where the Schrödinger equation is easy to solve. Guess solutions in these regions and plug them...

  • Consider a particle encountering a barrier with potential U = U.>0 between x = -a and...

    Consider a particle encountering a barrier with potential U = U.>0 between x = -a and x = a with incoming energy E > U. a) Write the symbolic wave functions before and after passing through the barrier (i.e., for x<-a and x>a; regions I and III). U1 b) Write down the Schrodinger equation for the wave function in the middle (region II) where the potential is non-zero i.e., where -a<x<a; region II). c) What solution would you try for...

  • 11. A quantum particle in an infinitely deep square well be QIC wave function given by...

    11. A quantum particle in an infinitely deep square well be QIC wave function given by 9x sin for 0 SXS Land zero otherwise, (a) Determine the expec. tation value of x. (b) Determine the probability of finding the particle near L by calculating the probability that the particle lies in the range 0.490L < x 0.510L. (c) What If? Determine the probability of finding the particle near L by calculating the probability that the particle lies in the range...

  • Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well...

    Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well potential of depth Vo, V(x) = -{ S-V., –a sx sa 10, else In lecture we explored the even bound state solutions for this potential. In this problem you will explore the odd bound state solutions. Consider an energy E < 0 and define the (real, positive) quantities k and k as 2m E K= 2m(E + V) h2 h2 In lecture we wrote...

  • [Finite potential well] Consider a symmetric square well potential of a finite depth, i.e., V(x) =...

    [Finite potential well] Consider a symmetric square well potential of a finite depth, i.e., V(x) = 0 inside the well, V(x) = V outside the well. NOTE: for a general discontinuous potential the boundary conditions are the continuity of both the wave function and its first derivative at the point(s) of the discontinuity of the potential y (x_)=y(x),y'(x_)=y'(x4) (i) What are the functional forms of the solutions for y(x) inside and outside the well? (ii) What are the explicit continuity...

  • Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a)...

    Q4. Consider the 1D infinite square-well potential shown in the figure below. V(x) O0 Position (a) State the time-independent Schrödinger equation within the region 0<x<L for a particle with positive energy E 2 marks] (b) The wavefunction for 0<x< L can be written in the general form y(x) = Asin kx + B cos kx. Show that the normalised wavefunction for the 1D infinite potential well becomes 2sn'n? ?snT/where ( "1,2,3 ! where ( n = 1,2,5, ). [4 marks]...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT