Question

Question #2 [30 Points) For the three phase system shown in Fig.1, use base of 20 MVA and 2.3 kV of the load. (i) Specify bas
0 0
Add a comment Improve this question Transcribed image text
Answer #1

e load bare MUA = 20 MUA 36 HE> 30 MUA 6.9ku 8%, Garv 2 Y Y 25MUA 6a/66ku 60/24 20 MUA 68/34ku 10% 25 MVA V 34/2.4kv 20MNA 15(1) . with bare kollate reactace of generator bare MUA = 20MNA tnew Znew- Zoid & (UPB) New ((kvalold 12 Prva boja akvala 34**10.0547 j0.0820 j0,2826 jologs j 1.130 j0.136 mm m m mm 1.0129 Ls (V) Vated load coment in amperes load cunnta pu lood carent

Add a comment
Know the answer?
Add Answer to:
Question #2 [30 Points) For the three phase system shown in Fig.1, use base of 20...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3) The single-line diagram of a three-phase power system is shown in Fig. 1. Equipment ratings...

    3) The single-line diagram of a three-phase power system is shown in Fig. 1. Equipment ratings are given as follows: G1 1,000 MVA, 15.0 kV, 20.18, o 0.07 pu G2 : 1,000 MVA. 15.0 kV, 攻=エ1 =エ2 = 0.20, ro = 0.10 pu G3 : 500 MVA, 13.8 kV. 1" = 띠 z2 = 0.15, zo 0.05 pu G4 : 750 MVA, 13.8 kV. ェd =ェ1 = 0.30, T2 = 0.40 ro = 0.10 pu Ti : 1,000 MVA. 15.0Δ/765Y...

  • Draw the reactance diagram for the power system shown in Fig. 1 on a 1200 MVA...

    Draw the reactance diagram for the power system shown in Fig. 1 on a 1200 MVA base and 26 kV base at G4 If each motor is operating at its rated current and voltage and 0.9 power factor lagging, find the voltage at bus C. Component Ratin 500 MVA, 22 kV 600 MVA, 23 kV 1200 MVA, 24 kV/500 kV 1500 MVA, 500 kV/13.8 kV Each: 400 MVA, 13.8 kV 700 MVA, 26 kV Three single-phase transformers, each 250 MVA,...

  • The one line diagram of a three-phase power system is shown in Fig.8. Impedances are marked...

    The one line diagram of a three-phase power system is shown in Fig.8. Impedances are marked in per unit on a 100 MW, 400 kV base. The Load at Bus 2 is S2 = 15.93 MW - j33.4Mvar, and at Bus 3 is S3 = 77 MW + j14 Mvar. It is required to hold the voltage at Bus 3 at 400 kV, Angle 0 degs. Working in per unit, determine the voltages at Buses 2 and 1. Q8: The...

  • note that 1) single phase system 2) base values at transmission line circuit A 100 MVA,...

    note that 1) single phase system 2) base values at transmission line circuit A 100 MVA, 12 kV Single-phase generator has a sub transient reactance of 20%. The generator supplies a two synchronous motors over 25-km transmission line having transformers at both ends. The motors, all rated 6.0 kV, 66 MVA and 50 MVA for Mi and M2, respectively. For both motors X" = 15%. The single phase transformer T is rated 150 MVA, 132/12 kV with leakage reactance of...

  • Fig Qshows the one-line diagram of a three-phase power system. As shown in Fig. Q3. the...

    Fig Qshows the one-line diagram of a three-phase power system. As shown in Fig. Q3. the two zones are connected by a 400 MVA, 240-kV/24-kV, Ý-A three phase transformer. The Y-A three phase transfonmer has an equivalent series impedance of ZTH - 1.2 + j1.6n per phase referred to the high voltage side (primary side). The three-phase power system can be studied with per unit quantities using base values of S-500 MVA and 240 kV in zone 1. By using...

  • Problem #1 Part I (50 points) Consider the following one-line diagram of a three-phase power system. Assume that the system has the following base quantities: S3 100 MVA, and VbaselL 38 kV at the...

    Problem #1 Part I (50 points) Consider the following one-line diagram of a three-phase power system. Assume that the system has the following base quantities: S3 100 MVA, and VbaselL 38 kV at the generator side. The rated line-to-line terminal voltage of the generator (BUS 1) is 38 kV. A single-circuit three-phase transposed overhead line composed by one ACSR Partridge conductor per phase with vertical configuration. The transmission line length is 50 km and the distance between phases a-b, b-c...

  • Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are...

    Consider the single-line diagram of the three-phase power system shown in Figure 1. Component ratings are as follows: Generator G1: 750 MVA, 18 kV, X0.2 per unit Generator G2: 750 MVA, 18 kV, X 0.2 per unit Synchronous Motor M: 1,500 MVA, 20 kV, X-20% A-Y Transformers Ti, T2, T's, & T.: 750 MVA, 500 kV Y/20 kV A, X = 10% Y-Y Transformer T's 1,500 MVA, 500 kV Y/20 kV Y, X-10% ne L:X (a) Using bases of 100...

  • 3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings...

    3.13 A single-line diagram of a three-phase power system is shown in Fig. 3.51. The ratings of the equipment are shown below Generator G: 100 MVA, 11 kV, Xi -X2-0.20 pu, Xo -0.05 pu Generator G2 : 100 MVA, 20 kV, Xi=X2=0.25 pu, Xo=0.03 pu, X,,-0.05 pu Transformer T: 100 MVA, 11/66 kV, Xi -X2-Xo 0.06 pu Transformer T2: 100 MVA, 11/66 kV, Xi-X2 = Xo 0.06 pu Line: 100 MVA, X,-X2 = 0.15 pu, Xo = 0.65 pu A...

  • The single line diagram of a simple power system is shown in Figure 1. The system...

    The single line diagram of a simple power system is shown in Figure 1. The system data are given in the table below. Choose a base power of 100 MVA and a base voltage of 132kV in Line4. Draw the impedance diagram of the system. Calculate and mark all impedances in pu on the diagram. Calculate the line to line voltage of Bus 3 in pu and in kV if the motor draws its rated power at rated voltage and...

  • Fig. Q3 shows the one-line diagram of a three-phase power system. As shown in Fig. 23,...

    Fig. Q3 shows the one-line diagram of a three-phase power system. As shown in Fig. 23, the two zones are connected by a 400 MVA, 240-kV/24-kV, Y-A three phase transformer. The Y-three phase transformer has an equivalent series impedance of 2T - 1.2 + |1.6 per phase referred to the high-voltage side (primary side). The three-phase power system can be studied with per unit quantities using base values of So=500 MVA and 240 kV in zone 1. 2 -1.61253.15" Line...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT