Question

0.190 m and the block moves a 3.50 m/s as it passes through A 0.325 kg block attached to a light spring osciates on a frictio
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1 For the sum of a mass-sphing eystem displacement is inz Aco (wt + $5 where Ar amplitude - er engulas frequeny velocity ve d

we have sin a + cord liels va ofw ( KY . Given : 3,5 mis when VZDA (1-0) 3.5 0.19 w. 2 19.42 hells ay we have worse 2 where

b otg goevg a SUM Ez I KnewAd 10-27X6.1972 E - 1.99014 J C) Cinen K A speed, vo Ano (- (Al) na V = 0.19x18-4a (1 – t)s V: 3.4

Add a comment
Know the answer?
Add Answer to:
0.190 m and the block moves a 3.50 m/s as it passes through A 0.325 kg...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • problem 17. fully explain parts e and f. I have answer need explanation as to why...

    problem 17. fully explain parts e and f. I have answer need explanation as to why we multiply for part e. amplitude times angular frequency to get vmax um 16. A 0.250-kg block attached to a light spring U 23. Thev At t frictionless, horizontal table. The oscillation amplitude is 0.125 m and the block moves at 3.00 m/s as it passes through equilibrium at 0. (a) Find the spring constant, k. (b) Calculate the total energy of the block-spring...

  • A block of mass m 2.00 kg is attached to a spring of force constant k-...

    A block of mass m 2.00 kg is attached to a spring of force constant k- 525 N/m as shown in the figure below. The block is pulled to a position x 4.00 cm to the right of equilibrium and released from rest. (o) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless m/s (b) Find the speed the block has as it passes through equilibrium (for the first time) if the...

  • Step by step plz. A 10-gm bullet traveling at 500 m/s passes through a 1-kg block...

    Step by step plz. A 10-gm bullet traveling at 500 m/s passes through a 1-kg block and emerges with a speed of 100 m/s. The block is initially at rest on horizontal surface. a) The block slides 2.00 m before coming to rest. Find mu_k for this surface. b) If the block is on a frictionless surface, and attached to a spring with k = 400 N/m, find the distance, d, that the spring is compressed.

  • A 5.00-g bullet moving with an initial speed of 450 m/s passes through a 1.00-kg block,...

    A 5.00-g bullet moving with an initial speed of 450 m/s passes through a 1.00-kg block, as shown in the figure. The block is initially at rest on a frictionless, horizontal surface and is connected to a spring that has a spring-force constant of 900 N/m. The block moves a distance d = 3.34 cm to the right after the collision. Note that the block only starts moving after the bullet has completely passed through the block. IWW d Round...

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 5.65 x 102 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position Xi = 5.45 cm to the right of equilibrium and released from rest. x=0 x=x; (a) Find the the work required to stretch the spring (b) Find the speed the block has as it passes through equilibrium m/s

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 4.55 x 10^2 N/m that lies on a horizontal frictionless surface as shown in the figure below. The block is pulled to a position x, = 5.65 cm to the right of equilibrium and released from rest. Find the the work required to stretch the spring. Find the speed the block has as it passes through equilibrium.

  • A block of mass m = 2.00 kg is attached to a spring of force constant...

    A block of mass m = 2.00 kg is attached to a spring of force constant k = 465 N/m as shown in the figure below. The block is pulled to a position xi = 4.70 cm to the right of equilibrium and released from rest. A spring labeled k has its left end attached to a wall and its right end attached to a block labeled m. The block is initially at a location labeled x = 0. It...

  • A block of mass 0.21 kg connected to a spring with spring constant 37 N/m is...

    A block of mass 0.21 kg connected to a spring with spring constant 37 N/m is oscillating on a frictionless horizontal surface. Its speed as it passes through its equilibrium position is 0.88 m/s. What is the total energy of the system in J?

  • LES AS -110 points SerPSE10 8.3.OP.008. A block of mass m = 2.00 kg is attached...

    LES AS -110 points SerPSE10 8.3.OP.008. A block of mass m = 2.00 kg is attached to a spring of force constant k = 435 N/m as shown in the figure below. The block is pulled to a position x; = 5.90 cm to the right of equilibrium and released from rest. = 0 *= x; 6 (a) Find the speed the block has as it passes through equilibrium if the horizontal surface is frictionless. m/s (b) Find the speed...

  • An airplane moves 100 m/s as it travels around a vertical circular loop which has a...

    An airplane moves 100 m/s as it travels around a vertical circular loop which has a 1.0-km radius. What is the magnitude of the resultant force on the 50-kg pilot of this plane at the bottom of this loop? A 4.0-kg block sliding on a horizontal frictionless surface is attached to one end of a horizontal spring (k = 200 N/m) which has its other end fixed. If the block has a speed of 4.0 m/s as it passes through...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT