Question

Q3: a flat plate of thickness L originally at Tithe surface at x = 0 is completely insulated while the wall at the other side

0 0
Add a comment Improve this question Transcribed image text
Answer #1

where, K = Condudien heet tramfu Cofficient. h= Convechive heattranfe coeficient. 9msuletel Te Too : Heat transfer through flBondry condition applied, in equO, when om=0, T,= Ti , AnyL, T2= Tp 8- (T-T2) L/K %3D (2) : Heat tromfu i pberte Thus eqn O o

Add a comment
Know the answer?
Add Answer to:
Q3: a flat plate of thickness L originally at Tithe surface at x = 0 is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 3.36 A straight rectangular fin of leneth L, thickness t and width W The upper surface...

    3.36 A straight rectangular fin of leneth L, thickness t and width W The upper surface being heated at a uniform flux q0.The heat transfer coefficient at the upper surface is hu and that of the lower surface is h. The ambient fluid teperature qo is To. At the base the heat transfer rate is o The two side surfaces and the tip are t insulated. Formulate the fin conduction equation and write the boundary conditions.

  • A thin flat plate of length L, thickness t, and width W> L is thermally joined...

    A thin flat plate of length L, thickness t, and width W> L is thermally joined to two large heat sinks that are maintained at a temperature T.. The bottom of the plate is well insulated, while the net heat flux to the top surface of the plate is known to have a uniform value of Heat sink T. Heat sink T. a) Derive the differential equation that determines the steady-state temperature distribution T(x) in the plate. b) Solve the...

  • Use the integral method for boundary layer flow and convective heat transfer over a flat plate he...

    Use the integral method for boundary layer flow and convective heat transfer over a flat plate heated by maintaining a constant heat flux q"w, for the case of very low Prandtl number, Pr0. Assume that the free stream velocity of the fluid, U, and free stream temperature, T-do not vary with x. Using the integral form of energy equation, show that under these conditions: (a) the temperature profile, (T- T) is given by, 41 2 CT-T oa (b) the wall...

  • list the assumptions (if appropriate), provide a sketch (if appropriate) A thin flat plate of length L-120 mm, thicknes...

    list the assumptions (if appropriate), provide a sketch (if appropriate) A thin flat plate of length L-120 mm, thickness t=4 mm, width W=30 mm, and thermal conductivity k-20 W/m-K is thermally joined to heat sinks at different temperatures, where T(x 0) = To-100°C and T(x = L) Ti-35°C. The top surface of the plate is subjected to uniform heat flux q"-20 kW/m2, and the bottom surface of the plate is subjected to uniform convection with a convection coefficient of h-50...

  • X Incorrect. The boundary-layer thickness, 5, on a smooth flat plate in an incompressible flow without...

    X Incorrect. The boundary-layer thickness, 5, on a smooth flat plate in an incompressible flow without pressure gradients depends on the freestream speed, U, the fluid density, p, the fluid viscosity, u, and the distance from the leading edge of the plate, x. (a) Express these variables in dimensionless form and (b) calculate dimensionless parameter (proportional to x) with x 0.150 m, p 385 kg/m3, U 0.147 m/s, u 0.2 x 104 N-s/m2. Click here to enter or edit your...

  • An aluminum plate with a thickness of L=5 mm is mounted in a horizontal position, and...

    An aluminum plate with a thickness of L=5 mm is mounted in a horizontal position, and its bottom surface is well insulated. A special, thin coating (with emissivity and solar absorptivity of 0.25) is applied to the top surface. The density ρ and specific heat c of aluminum are known to be 2700 kg/m3 and 900 J/kg · K, respectively. Consider conditions for which the plate is initially at a temperature of ??????=25 °C and its top surface is suddenly...

  • Air at a temperature of 300 K flows over one side of a flat plate of...

    Air at a temperature of 300 K flows over one side of a flat plate of width 1 m at a velocity of 20 m/s. The plate has a constant surface temperature of 350 K. Assume Re(x,c)=5x10^5. a) What is the velocity boundary layer thickness at the end of the plate if L=0.25 m? What if L=1 m? b) Calculate the drag on the plate if L=0.25 m. What is the drag if L=1 m? c) Find the heat transfer...

  • Need help with part B (the sketching!) thanks Problem 3: A thin flat plate of length...

    Need help with part B (the sketching!) thanks Problem 3: A thin flat plate of length L-120 mm, thickness t=4 mm, width W=30 mm, and thermal conductivity k=20 W/m-K is thermally joined to heat sinks at different temperatures, where T(x = 0) = To-100 C and T(x = L) = T,-35°C. The top surface of the plate is subjected to uniform heat flux q"-20 kW/m2, and the bottom surface of the plate is subjected to uniform convection with a convection...

  • 3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on...

    3). Standard air flows over a flat plate as shown. Laminar Find: boundary layer forms on the surface. Assume the boundary (a). Wall shear stress, Fj)! layer bas a cubic velocity profile: (b). Boundary layer thickness, x)! (c). Shape factor (H-8t/0) Momentum integral equation on a flat plate is ax) Ud(u/U) Ху 1m The displacement thickncss and the momentum thickness are Freestream velocity is 1.0 m/s. The fluid viscosity and density are 1.55 x 10 m'ls and 1.23 kg/m, respectively...

  • Supplemental Problem 2.003 A large plate of thickness 2L is at a uniform temperature of Tỉ-190°C,...

    I will rate. Thanks so much Supplemental Problem 2.003 A large plate of thickness 2L is at a uniform temperature of Tỉ-190°C, when it is suddenly quenched by dipping it in a liquid bath of temperature To Heat transfer to the liquid is characterized by the convection coefficient h. Assume x = 0 corresponds to the midplane of the wall -20°C (a) If h = 100 w/m2, K, what is the heat flux atx = L and t = 0?...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT