Question

17. Suppose you have the following circuit. The switch has been open for a long time, and is closed at time t-0. point The se

8. By rotating the dial of an antenna tuner, what are we manipulating within the circuit element? Resistance Capacitance Indu

0 0
Add a comment Improve this question Transcribed image text
Answer #1

UL e. dt dt dE 2. 5 16 2xlõ3 Xo·IX loe し2(2 manriplasny Caahne of.an adensuner dk ID

Add a comment
Know the answer?
Add Answer to:
17. Suppose you have the following circuit. The switch has been open for a long time,...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • do not use s domain method ,use only differential equation 3. In the circuit shown, switch 1 has been closed for a long time before it is opened at t 0, and switch 2 has been opened for a long time b...

    do not use s domain method ,use only differential equation 3. In the circuit shown, switch 1 has been closed for a long time before it is opened at t 0, and switch 2 has been opened for a long time before it is closed at t = 0. SW2 sw, 0.5Ω R2 1(2 A, 20 A i(t) 0.5 H a. Find the initial voltage v(O)- Vo across the capacitor and initial current through the inductor (0) lo at t...

  • The switch A in the circuit has been open for a long time. Calculate the voltage...

    The switch A in the circuit has been open for a long time. Calculate the voltage u_2(t) after the switch is closed at t=0. The capacitor C_1 has a initial voltage of u_1=100 V at t<0. Capacitor C_2 lacks initial energy. Rz = 200 kN2 R2 = 120 k12 + + C

  • Switch S has been at position a for a very long time and is then thrown...

    Switch S has been at position a for a very long time and is then thrown to position b. You know that the capacitance C is 17.0 uF. Your data logger makes a graph of the voltage across the capacitor as a function of time, with t = 0 being the instant the switch was thrown to position b. The graph is shown in the figures below. AV (V) 30 25 20 15 10 5 has t (ms) 10 15...

  • Consider the circuit depicted in Fig. 2. The switch SW1 has been closed for a long time before it...

     Consider the circuit depicted in Fig. 2. The switch SW1 has been closed for a long time before it is opened at time t = 0. The switch SW2 has been open for a long time before it is closed att = 0.1 (sec). i) Find the initial current I(0) flowing in the inductor and the initial voltage V(0) across the capacitor. ii) Find the voltage V(t) across the capacitor and the current I(t) through the inductor for 0 ≤ t ≤...

  • TASK (i): Find time-domain equations for a parallel LC resonant circuit An LC resonant circuit is...

    TASK (i): Find time-domain equations for a parallel LC resonant circuit An LC resonant circuit is sometimes referred to as an LC-tank or tuned circuit. It is made up of two components: an inductor (L) and a capacitor (C), hence the name. CAPACITOR 4 e V - + V - Figure 1: Capacitor symbol The charge on a capacitor is proportional to the voltage across it, the constant of proportionality being the capacitance C, measured in Farads (F). Since current...

  • Problem 4 In the circuit shown below, the switch has been opened for a very long...

    Problem 4 In the circuit shown below, the switch has been opened for a very long time prior to t= 0 and closes at t = 0 and remains closed for a long time. Please find: a) i (0), vc(ot), b) the steady-state voltage across the capacitor in terms of Us, Rı, and R2 c) the steady state current through the inductor in terms of Us, Ry, and R2 d) Write the differential equation for it) in terms of Vs,...

  • In the following circuit, the switch that had been OPEN for a sufficient time was shorted...

    In the following circuit, the switch that had been OPEN for a sufficient time was shorted at t=0 In this case, the voltage v(t) at both ends of the capacitor and the current i(t) at the injector are obtained. 1) What is the Capacitor voltage v (0-) value and inductor current i (0-) value at t=0- just before t=0- 2) If sufficient time has passed since switching occurred, what is the value of v(00) and i(00) when t=oo? 3) In...

  • 1) In the following circuit the switch has been closed for a long time and is...

    1) In the following circuit the switch has been closed for a long time and is opened at t0 S1 R1 ?0 V1 R2 L1 10H C1 (a) Find i1(0)=--, ife)- Ve(00) = 4 points (b) Write the differential equation for the circuit. 4 points (c) Write the circuit characteristic equation. 2 points (d) Determine the roots of the characteristic equation. 6 points (e) Is the circuit overdamped, critically damped or underdamped? 2 points

  • 1. What does the time constant of an RC circuit that is being charged tell you?

     Background Summary Questions: 1. What does the time constant of an RC circuit that is being charged tell you? 2. What does the time constant of an RC circuit that is being discharged tell you? 3. How is the voltage across the capacitor related to the charge on a capacitor? (Linear, Inverse, Quadratic, etc.) 4. Based on your answer to question 3, how would you write an expression for the voltage across the capacitor as a function of time? a. Charging: V(t) b. Discharging: V(t)= Background: The...

  • (1) Consider the RC circuit shown in Figure 1. For t<0 the switch is open, and...

    (1) Consider the RC circuit shown in Figure 1. For t<0 the switch is open, and the charge stored on the capacitor is 0. At t-0 the switch is closed, and the voltage source begins charging the capacitor. Let R1-R2-220 Ω , C-0.47 μ F , Vs-5 V. (a) Write the differential equation as an expression for the capacitor voltage fort> 0 (i.e. write the differential equation) and calculate the time constant (b) Calculate the steady-state capacitor voltage R2 R1...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT