Question

Starting from an appropriate energy balance, derive the temperature distribution in a fin of uniform cross-sectional...

Starting from an appropriate energy balance, derive the temperature distribution in a fin of uniform cross-sectional area and subject to an insulated tip condition (case B of table 3.4) Also, derive the expression for the fin heat transfer rate.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

2mL 2mL 2 zmレ 2ML 20) L m (2 L-x) 4 e thhe toms 2M L mCL-) m L M L CeshmL e - KA KA KAOo tanh mtPenK厶 ten u 0 21 p

Add a comment
Know the answer?
Add Answer to:
Starting from an appropriate energy balance, derive the temperature distribution in a fin of uniform cross-sectional...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 3: Ordinary Differential Equations A straight fin of uniform rectangular cross section (0.5 mm x...

    Problem 3: Ordinary Differential Equations A straight fin of uniform rectangular cross section (0.5 mm x 100 mm) with a length (L) of 5 cm is attached to a base surface of temperature 110°C (T). The surface of the fin is exposed to a cooling fluid at 20°C (T) with a convection heat transfer coefficient (h) of 15 W/(m²K). The conductivity (k) of the fin material is 400 W/(m.K). (a) Plot the temperature profile along the length of the fin,...

  • G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 7...

    G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 70 mm are attached to the wall with surface temperature o C. The fin is made of material with thermal conductivity of 210 W/mk, and exposed to an ambient air condition of 24 °C and the convection heat transfer coefficient of 190 W/m2k. f 300 1- Plot the temperature variation for the following boundary conditions a- Infinitely long fin b- Adiabatic fin tip c-...

  • QUESTION 4 The temperature distribution for a long fin with uniform cross section is cosh[m(L -...

    QUESTION 4 The temperature distribution for a long fin with uniform cross section is cosh[m(L - x)] cosh(ml) where b means base, O = T - To, m= rand A and P are the area and perimeter of the cross- section. K is in air at A long copper rod of diameter D = 1.5 cm, L = 20 cm, and thermal conductivity 380 W/ m 20°C. The temperature at the base is 150°C. If m = 6 m-7, the...

  • please show derivation of the nodal equations and how to create the graphs. A straight fin...

    please show derivation of the nodal equations and how to create the graphs. A straight fin of uniform cross section is fabricated from a material of thermal conductivity 50 W/m*K, thickness w 6mm, and length L-48mm, and is very long in the direction normal to the page. The convection heat transfer coefficient is 500 W/m2 *K with the ambient air temperature of T-30C. The base of the fin is maintained at Tb = 100C, while the fin tip is will...

  • Considering the cooling process of a circular fin by means of convective heat transfer along its...

    Considering the cooling process of a circular fin by means of convective heat transfer along its length (see figure below), governed by: d dT where a is a parameter and T is the ambient temperature. The fin has a uniform temperature at the cross-sectional area (in the radial direction). The base (left side) of the fin is at a constant temperature TB of 120° and the top (right side) of the fine is fully insulated. Data: L = 1.0 m,...

  • A hot reservoir with a temperature of 687 K is 0.58 m away from a cold...

    A hot reservoir with a temperature of 687 K is 0.58 m away from a cold reservoir with a temperature of 358 K. The two reservoirs are insulated from each other except for a rod of brass (k = 109 W/m-K) that has a cross-sectional area of 0.058 m2. The entire system is allowed to reach a steady-state condition. 1) How much energy is transferred by heat between the hot reservoir and the cold reservoir in ten minutes? J Submit...

  • A hot reservoir with a temperature of 687 K is 0.58 m away from a cold...

    A hot reservoir with a temperature of 687 K is 0.58 m away from a cold reservoir with a temperature of 358 K. The two reservoirs are insulated from each other except for a rod of brass (k = 109 W/m-K) that has a cross-sectional area of 0.058 m2. The entire system is allowed to reach a steady-state condition. 1) How much energy is transferred by heat between the hot reservoir and the cold reservoir in ten minutes? J Submit...

  • Derive each temperature distribution for each tip condition from the general equastion theta(x)=C1e^mx + C2e^-mx usinf...

    Derive each temperature distribution for each tip condition from the general equastion theta(x)=C1e^mx + C2e^-mx usinf boundry condition show all work for each tip condition Tip Condition (r = L Temperature Distribution 0/0, Convection heat transfer: ho(L) = -kdo/dx=L cosh m(L - x) + (h/mk) sinh m(L - x) cosh mL + (h/mk) sinh mL Adiabatic: do/dx = = 0 cosh m(L – x) cosh mL Prescribed temperature: 8(L) = 0 (04/06) sinh mx + sinh m(L - x) sinh...

  • The heat that is conducted through a body must frequently be removed by other heat transfer...

    The heat that is conducted through a body must frequently be removed by other heat transfer processes. For example, the heat generated in an electronic device must be dissipated to the surroundings through convection by means of fins. Consider the one-dimensional aluminum fin (thickness t 3.0 mm, width 20 cm, length L) shown in Figure 1, that is exposed to a surrounding fluid at a temperature T. The conductivity of the aluminum fin (k) and coefficient of heat convection of...

  • Part 2 - Problems (75 marks) I. Copper fins (k 401 W/mK) of uniform square cross-section...

    Part 2 - Problems (75 marks) I. Copper fins (k 401 W/mK) of uniform square cross-section (2mm x 2mm) and length L 30mm are used in a fin array to enhance heat transfer from a 40mm x 40mm surface that is maintained at Tb 170°C. There are a total of 100 fins, and the tip of the fins is maintained at 35°C. Air circulates over the fin array with a temperature of To = 15°C and a convection coefficient of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT