Question

Consider steady flow of steam through a horizontal pipe at a rate of 0.5 kg/s: Steam enters the pipe as a saturated vapor at

(b) Determine the rate of heat transfer from the pipe. in kW. Is the pipe gaining heat or losing heat during the flow process

(c) For a control volume that includes only the pipe and its contents, calculate the rate of entropy generation, in kW/K. (20

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Given Data & ma88 flow rate m = 0.5 kal Inlet Р. o • 5 MPа Cis 12 mis Saturated vapor Exit P=0.45 mpa 95% Quality x=0.95 C2 =@ Assumptions ; 0 Steady flow procesa in pipe. © mis ma c constant mass flow rate), 7 No change in potential energy (2=22) NoEnergy equation som - Apply steady flow energy equation 3* (but + 92.) +8= mil he + com flow e fg 22) tw for Chit qo) +0=3 entoopy balance (ds) : let Sie Specific entropy at innet - Sa= specific entropy at Exit ds(52-54) -- ® Rate of heat transfer (8) t mi Chit ) +0= wiſho+z) - from steam table [ Pressure table] at wo P=015 mpa 1 (saturated vapoт т SqSf + se c Spg) sa = 1, go 304 г (5.365а) Sa= , возг +[o 9x x(6-3osə) ] 52 = 6, 86 674 т т «Я К* (by + 2) +8 = *i ( 62 = c) - B3 ™ (ha teen-bi- ep)• RE 05 [(2659.1069) 4 (1912 - 2 more w - (1922 000 J * = -55.52 kW] (-) figo . Hest 1088 • Heat Reject surrounding to the fr© entropy generation 08. 6 (S) - 9 = 0.5C 6, 860755 - 6.89093 - [-55:52] = 0,1588395 kW - Yoo 8

Add a comment
Know the answer?
Add Answer to:
Consider steady flow of steam through a horizontal pipe at a rate of 0.5 kg/s: Steam...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity...

    Steam enters a horizontal 14-cm-diameter pipe as a saturated vapor at 5 bar with a velocity of 10 m/s and exits at 4.5 bar with a quality of 95%. Heat transfer from the pipe to the surroundings at 291K takes place at an average outer surface temperature of 400 K. For operation at steady state, determine (a) the velocity at the exit, in m/s. (b) the rate of heat transfer from the pipe, in kW.? (c) the rate of entropy...

  • Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and po...

    Steam enters a turbine operating at steady state at 30 bar, 400 °C with a mass flow rate of 126 kg/min and exits as saturated vapor at 0.2 bar, producing power at a rate of 1.5 MW. Kinetic and potential energy effects can be ignored. Determine the followings. (a) (5 points) The rate of heat transfer, in kW. (b) (15 points) The rate of entropy production, in kW/K, for an enlarged control volume that includes the turbine and enough of...

  • thermo question 2. (20 points) Steam enters a turbine operating at steady state at 2 MPa,...

    thermo question 2. (20 points) Steam enters a turbine operating at steady state at 2 MPa, 360°C with a velocity of 100 m/s. Saturated vapor exits at 0.1 MPa and a velocity of 50 m/s. The elevation of the inlet is 3 m higher than at the exit. The mass flow rate of the steam is 15 kg's, and the power developed is 7 MW. Let g -9.81 m/s Determine (a) the area at the inlet, in m, and (b)...

  • 3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and...

    3. 50 points) Steam enters a turbine operating at a steady state at 12 MPa and 700 C. The mass flow rate of the steam is 200 kg'min. The steam exits the turbine as a saturated vapor at 3 bar. The turbine produces 3.0 MW of power. Ignore potential and kinetic energy effects. Assuming heat transfer from the turbine to the surroundings occurs at 20 C, determine: (a) (20 pts) The rate of heat transfer, in kW (b) (20 pts)...

  • A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/...

    A) Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 2,663 kJ/kg and a mass flow rate of 0.1 kg/s. At the exit, the specific enthalpy is 1,531 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW. B) Refrigerant 134a enters a horizontal pipe operating at steady state at 40°C, 3.1 bar and a velocity of...

  • 5. Steam at 140 bar and 600 °C enters a turbine at a mass flow rate...

    5. Steam at 140 bar and 600 °C enters a turbine at a mass flow rate of 0.5 kg/s. This steam exits the turbine as a saturated vapor at 300 °C. During operation, the turbine loses 200 kW of heat to the surroundings. Assume that the turbine operates at steady state and that the change of kinetic energy and gravitational energy can be ignored. (a) Sketch the system and boundary (4 points); (b) Label all mass flows and energy transfer...

  • Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 1,671 kJ/kg...

    Steam enters a horizontal pipe operating at steady state with a specific enthalpy of 1,671 kJ/kg and a mass flow rate of 0.5 kg/s. At the exit, the specific enthalpy is 2,162 kJ/kg. If there is no significant change in kinetic energy from inlet to exit, determine the rate of heat transfer between the pipe and its surroundings, in kW.

  • A steam turbine receives 8 kg/s of steam at 9 MPa, 650 C and 60 m/s...

    A steam turbine receives 8 kg/s of steam at 9 MPa, 650 C and 60 m/s (pressure, temperature and velocity). It discharges liquid-vapor mixture with a quality of 0.94 at a pressure of 325 kPa and a velocity of 15 m/s. In addition, there is heat transfer from the turbine to the surroundings for 560 kW. Find the power produced by the turbine and express it in kW

  • Thermo one Question 5 A steam turbine generates energy in the form of work at the rate of 346.1...

    Thermo one Question 5 A steam turbine generates energy in the form of work at the rate of 346.1 kJ/kg of steam. The steam at the inlet of the turbine is at 8 MPa, 480oC, and at a velocity of 163.5 m/s. The steam exits the turbine at 2 MPa, 240oC, and a velocity of 55.3 m/s. Heat transfer to the surroundings occurs where the outer surface (boundary) temperature is at 333.5oC. Determine the rate of entropy production (kJ/kg-K) within...

  • Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality...

    Steam enters a counterflow heat exchanger operating at steady state at 0.07 MPa with a quality of 0.9 and exits at the same pressure as saturated liquid. The steam mass flow rate is 1.3 kg/min. A separate stream of air with a mass flow rate of 100 kg/min enters at 30oC and exits at 60oC. The ideal gas model with cp = 1.005 kJ/kg·K can be assumed for air. Kinetic and potential energy effects are negligible. Determine the temperature of...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT