Question

The temperature distribution across a wall 0.2 m thick at a certain instant of time is T(x) = a + bx + cxº, where T is in degrees Celsius and x is in meters, a = 200°C, b = -190°c/m, and c = 30°C/m2. The wall has a thermal conductivity of 1 W/m.k. (a) On a unit surface area basis, determine the rate of heat transfer into and out of the wall and the rate of change of energy stored by the wall. (b) If the cold surface is exposed to a fluid at 100°C, what is the convection coefficient? The rate of heat transfer into wall, in W/m: The rate of heat transfer out of wall, in W/m2: The rate of change of energy stored by the wall, in W/m: The convection coefficient, in W/m2.K:

0 0
Add a comment Improve this question Transcribed image text
Answer #1

m2 m- T-T) (163.2-lo m2Is

Add a comment
Know the answer?
Add Answer to:
The temperature distribution across a wall 0.2 m thick at a certain instant of time is...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The temperature distribution across a wall 1 m thick at a certain instant of time is...

    The temperature distribution across a wall 1 m thick at a certain instant of time is T(x) = a + box + cx", where T is in Kelvin and x is in meters, a = 350 K, b = -100 K/m, and c=50 K/m". The wall has a thermal conductivity of 2 W/m.K. (a) On a unit surface area basis, determine the rate of heat transfer into and out of the wall and the rate of change of energy stored...

  • 2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The...

    2.) A plane wall is made of brick with a thermal conductivity of 1.5 W/(m-K). The wall is 20 cm thick and has a surface area of 10 m2. One side of the wall is exposed to outside air blowing against the wall resulting in a heat transfer coefficient of 20 W/(m2-K). The other side is exposed to an air-conditioned room with a convective heat transfer coefficient of 5 W/(m2-K). a. What are the thermal resistances corresponding to conduction through...

  • The steady state temperature distribution across a wall, where -0.02 m, is T(X)*+bx+ A uniform heat...

    The steady state temperature distribution across a wall, where -0.02 m, is T(X)*+bx+ A uniform heat generation rate. 9. ration rate. 9. Occurs in the wall and is given in the table below. Coefficients a, b and care in units shown in the table and x is in meters. The origin of the x coordinate is at the middle of the wall as shown. Each side of the wall experiences convection from a fluid at -20°C 82 K (thermal conductivity...

  • A large wall made of 10-cm-thick solid brick (k = 0.8 W/m.K, p 2000 kg/m3, and p 800 J/kg.K) is o...

    Heat transfer question. A large wall made of 10-cm-thick solid brick (k = 0.8 W/m.K, p 2000 kg/m3, and p 800 J/kg.K) is originally at a uniform temperature of 30°C. The wall is adiabatic (well insulated) on one side as shown in the figure. The other surface is suddenly exposed to convection air flow at 10°C, resulting in a heat transfer coefficient h=40W/m2.K. Fluid (4.1) Determine the temperature of both surfaces Gr 0 and x 10 cm) after 5 hr...

  • [6] A 20-cm thick wall of a house made of brick (k = 0.72W/m. C) is...

    [6] A 20-cm thick wall of a house made of brick (k = 0.72W/m. C) is subjected to inside air at 22.C with a convection heat-transfer coefficient of 15 W/m2. C. The inner surface temperature of the wall is 18 C and the outside air temperature is -1 °C. Determine the outer surface temperature of the wall and the heat-transfer coefficient at the outer surface.

  • Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k =...

    Problem 3. A plane wall of thickness 2L = 40 mm and thermal conductivity k = 5 W/m.K experiences uniform volumetric heat generation at a rate ġ, while convection heat transfer occurs at both of its surfaces (x = -1, + L), each of which is exposed to a fluid of temperature Too = 20 °C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx? where a = 82.0°C,...

  • Consider a 4 m high, 6 m wide and 0.17 m thick wall whose thermal conductivity is k = 0.8 W/m.oC....

    Consider a 4 m high, 6 m wide and 0.17 m thick wall whose thermal conductivity is k = 0.8 W/m.oC. On a certain day, the temperatures of the inner and the outer medium close to the wall are measured to be 14oC and 6oC, respectively. Both inner and outer surfaces are subjected to convection heat transfer. Assume that the convection heat transfer coefficient is the same for the two surfaces h = 5 W/m2 ∙ °C. 1. Draw the...

  • A 0.1 m thick brick wall with thermal conductivity 0.66 Wm K-1 is exposed to cold wind on the out...

    A 0.1 m thick brick wall with thermal conductivity 0.66 Wm K-1 is exposed to cold wind on the outside of a house, at 270 K with convective heat transfer coefficient of 22.43 Wm2K1. On the inside of the house is calm air at 295.8 K, with a natural convective heat transfer coefficient of 10.49 Calculate the rate of heat transfer per unit area, in Wm, giving your answer to 3 decimal places A 0.1 m thick brick wall with...

  • Question Water at an average temperature of 110°C and an average velocity of 3.5 m/s flows through a 5-m-long Beryllium Copper (k-66 w/m.k) tube merge in a boiling water tank. Do NOT ignore the wall...

    Question Water at an average temperature of 110°C and an average velocity of 3.5 m/s flows through a 5-m-long Beryllium Copper (k-66 w/m.k) tube merge in a boiling water tank. Do NOT ignore the wall resistance. The inner and outer diameters of the tube are Di 1.0 cm and Do 2 cm, respectively. If the convection heat transfer coefficient at the outer surface of the tube where boiling is taking place is ho- 8400 W/m2.K, a) Determine the overall heat...

  • The upper surface of a 60-cm-thick solid plate (k = 237 W/m.K) is being cooled by...

    The upper surface of a 60-cm-thick solid plate (k = 237 W/m.K) is being cooled by water with temperature of 20°C. The upper and lower surfaces of the solid plate maintained at constant temperatures of 60°C and 120°C, respectively. Given: The thermal conductivity of the solid plate is given as k= 237 W/m.K. (T1+T) The thermal conductivity of water at the film temperature of Tf =(60°C + 20°C)/2 = 40°C is kfluid = 0.631 W/m.K. = 2 1. value: 3.00...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT