Question

5. A converging lens ( 12.0 cm) is located 30.0 cm to the left of a diverging lens f -6.00 cm). A 9.00 cm tall postage stamp is located 36.0 cm to the left of the converging lens. (A) Locate the final image of the stamp relative to the diverging lens. ditem (B) Find the final image heighth?2-Aiscr (C) Is the final image real or virtual?Virtudi (D) Is the final image upright or inverted (with respect to the original object)? nverto (E) Is the final image larger or smaller than the original object? Smauur

The answers are marked but I am going wrong somewhere still. can you explain using the thin lens equation and magnification equation. thanks!!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

三26cm 12cm 3-1 3 6 12 36 18 C 419 12 C -6 12 L 2. overe mai 12 2. nh

Add a comment
Know the answer?
Add Answer to:
The answers are marked but I am going wrong somewhere still. can you explain using the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A converging lens ( f = 12.0 cm) is located 30.0 cam to the left

    A converging lens ( f = 12.0 cm) is located 30.0 cm to the left of a diverging lens ( f = 6.00 cm). A postage stamp is placed 36.0 cm to the left of the converging lens. (a) Locate the final image of the stamp relative to the diverging lens. (b) Find the overall magnification. (c) Is the final image real or virtual? With respect to the original object, is the final image (d) upright or inverted, and is...

  • A converging lens with a focal length of 4.9 cm is located 20.9 cm to the...

    A converging lens with a focal length of 4.9 cm is located 20.9 cm to the left of a diverging lens having a focal length of -11.0 cm. If an object is located 9.9 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. a) Where is the image located as measured from the diverging lens? b) What is the magnification? c) Also determine, with respect to the original object...

  • i am having trouble with the diagram, as i understand the algebra. 7. A converging lens...

    i am having trouble with the diagram, as i understand the algebra. 7. A converging lens (f=+20.0 cm) is located 60.0 cm to the left of a diverging lens (f=-30.0 cm). A 3.00 cm object is placed 10.0 cm to the left of the converging lens. (a) What is the position of the intermediate image (i.e., the image formed by lens one alone) relative to the converging lens? (b) What is the position of the final image relative to the...

  • A converging lens with a focal length of 4.2 cm is located 20.7 cm to the...

    A converging lens with a focal length of 4.2 cm is located 20.7 cm to the left of a diverging lens having a focal length of -11.5 cm. If an object is located 9.2 cm to the left of the converging lens, locate and describe completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? Submit Answer Tries 0/10 What is the magnification? Submit Answer Tries 0/10 Also determine, with...

  • A converging lens with a focal length of 6.0 cm is located 24.0 cm to the...

    A converging lens with a focal length of 6.0 cm is located 24.0 cm to the left of a diverging lens having a focal length of -13.0 cm. If an object is located 11.0 cm to the left of the converging lens, locate and describ completely the final image formed by the diverging lens. Where is the image located as measured from the diverging lens? 63.81 cm Submit Answer Incorrect. Tries 3/10 Previous Tries What is the magnification? Submit Answer...

  • A converging lens with a focal length f1 = 9.00 cm is located 18.0 cm to...

    A converging lens with a focal length f1 = 9.00 cm is located 18.0 cm to the left of a converging lens with index of refraction of 1.52 and a radius R = 6.24 cm. An object stands 14.0 cm to the left of the first lens in the combination. Draw the Ray diagrams! (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification. (c) Is the final image real or virtual? With...

  • 11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of...

    11.87 A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position Take the image formed by the first lens to be the object for the second lens and apply the lens equation to each lens to locate the final image. cm 8.442...

  • Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are...

    Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are separated by 24.0 cm. The focal length of each lens is 12.0 cm. An object is placed 36.0 cm to the left of the lens that is on the left. (a) Locate the final image relative to the lens on the right (b) Obtain the overall magnification. (c) Is the final image real or virtual? (d) Is the final image upright or inverted relative...

  • Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are...

    Chapter - 26 The Refraction of Light: Lenses and Optical Instruments 8. Two converging lenses are separated by 24.0 cm. The focal length of each lens is 12.0 cm. An object is placed 36.0 cm to the left of the lens that is on the left. (a) Locate the final image relative to the lens on the right. (b) Obtain the overall magnification. (c) Is the final image real or virtual? (d) Is the final image upright or inverted relative...

  • part 1: A converging lens (f = 10.8 cm) is located 32.0 cm to the left...

    part 1: A converging lens (f = 10.8 cm) is located 32.0 cm to the left of a diverging lens (f = -7.80 cm). A postage stamp is placed 43.9 cm to the left of the converging lens. (a) Locate the final image of the stamp relative to the diverging lens. (b) Find the overall magnification. part 2: Two identical diverging lenses are separated by 16 cm. The focal length of each lens is -5.1 cm. An object is located...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT