Question

An object is placed 14.3 cm to the left of a diver


An object is placed 14.3 cm to the left of a diver


Physics lens problem. please help and show work please thank you!

0 0
Add a comment Improve this question Transcribed image text
Answer #1

apply lens formula for diverging lens

1/f = 1/v - 1/u

- 1/12 = 1/v + 1/ 14.3

v = 6.525 cm

now the above image acts as object for lens 2

object distance of which is given by

u' = 16.8 + 6.525 = 23.325 cm

=====

b)

using lens formula for otger lens

1/26.5 = 1/ v' + 1/23.235

v' = 188.584 cm to the left of other (converging) lens

=====

comment before rate in case any doubt, will reply for sure.. goodluck

Add a comment
Know the answer?
Add Answer to:
Physics lens problem. please help and show work please thank you! An object is placed 14.3...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • An object is placed 32.0 cm to the left of a diverging lens with a focal...

    An object is placed 32.0 cm to the left of a diverging lens with a focal length of -20.0 cm. A converging lens of focal length of 32.0 cm is placed a distance d to the right of the diverging lens. Find the distance d that the final image is at infinity. ______cm

  • Please HELP!!! I will rate good for good answers! A diverging lens with a focal length...

    Please HELP!!! I will rate good for good answers! A diverging lens with a focal length of -15 cm is placed 16 cm to the right of a converging lens with a focal length of 18 cm . An object is placed 33 cm to the left of the converging lens. Part A Where will the final image be located? to the left of the diverging lens to the right of the diverging lens Submit Previous Answers Correct Part B...

  • Part A: A diverging lens has of focal length of 15.0 cm. An object is placed...

    Part A: A diverging lens has of focal length of 15.0 cm. An object is placed 21 cm to the left of the lens. a) draw a ray diagram showing the situation. b) find the location of the image produced by the lens (mind the signs). Part B: A converging lens is located 30 cm to the right of the previously mentioned diverging lens (part A). As a result, the image you found in part (a) is now instead located...

  • An object is placed 45 cm to the left of a converging lens of focal length...

    An object is placed 45 cm to the left of a converging lens of focal length 17 cm. A diverging lens of focal length −29 cm is located 11 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens?cm b) What is the linear magnification of the final image?

  • Part A: A diverging lens has of focal length of 15.0 cm. An object is placed 21 cm to the left of the lens. a) draw a ray diagram showing the situation. b) find the location of the image produced by t...

    Part A: A diverging lens has of focal length of 15.0 cm. An object is placed 21 cm to the left of the lens. a) draw a ray diagram showing the situation. b) find the location of the image produced by the lens (mind the signs). Part B: A converging lens is located 30 cm to the right of the previously mentioned diverging lens (part A). As a result, the image you found in part (a) is now instead located...

  • Could you please show all of the steps taken in solving the problem and explain the process fully...

    Could you please show all of the steps taken in solving the problem and explain the process fully, using sentences/phrases (if possible) to understand why those steps were taken and why you got that answer. Also could you please draw a diagram with any applicable variables/values to help visualize the problem better. Thank you in advance for all the help! A 1.20-cm-tall object is 50.0 cm to the left of a diverging lens (lens 1) of focal length of magnitude...

  • Part A and B A diverging lens with a focal length of 14 cm is placed...

    Part A and B A diverging lens with a focal length of 14 cm is placed 11 cm to the right of a converging lens with a focal length of 20 cm . An object is placed 41 cm to the left of the converging lens. Where will the final image be located? Express your answer using two significant figures. EVO ALQ * R O 2 ? d= cm to the left of the diverging lens Submit Request Answer Part...

  • An object 2.00 cm high is placed 45.3 cm to the left of a converging lens...

    An object 2.00 cm high is placed 45.3 cm to the left of a converging lens having a focal length of 40.3 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) final position cm magnification...

  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
Active Questions
ADVERTISEMENT