Question

An object is placed 32.0 cm to the left of a diverging lens with a focal...

An object is placed 32.0 cm to the left of a diverging lens with a focal length of -20.0 cm. A converging lens of focal length of 32.0 cm is placed a distance d to the right of the diverging lens. Find the distance d that the final image is at infinity.

______cm

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
An object is placed 32.0 cm to the left of a diverging lens with a focal...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • A converging lens is placed 32.0 cm to the right of a diverging lens of focal...

    A converging lens is placed 32.0 cm to the right of a diverging lens of focal length 13.0 cm. A beam of paralel light enters the diverging lens from the left, and the beam is agai parallel when it emerges from the converging lens. Calculate the focal length of the converging lens. Need Help? 24 -3 points SerCP10 23 P041.Wi My Notes Ask Your Two converging lenses, each of focal length 15.2 cm, are placed 40.9 cm apart, and an...

  • An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length o...

    An object 2.02 cm high is placed 40.2 cm to the left of a converging lens having a focal length of 30.5 cm. A diverging lens with a focal length of-20.0 cm is placed 110 cm to the right of the converging lens. (a) Determine the position of the final image. distance location to the right , of the diverging lens (b) Determine the magnification of the final image 128.4 Your response differs from the correct answer by more than...

  • A 1.00-cm-high object is placed 3.25 cm to the left of a converging lens of focal...

    A 1.00-cm-high object is placed 3.25 cm to the left of a converging lens of focal length 7.15 cm. A diverging lens of focal length −16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image.

  • An object 2.00 cm high is placed 45.3 cm to the left of a converging lens...

    An object 2.00 cm high is placed 45.3 cm to the left of a converging lens having a focal length of 40.3 cm. A diverging lens having a focal length of −20.0 cm is placed 110 cm to the right of the converging lens. (Use the correct sign conventions for the following answers.) (a) Determine the final position and magnification of the final image. (Give the final position as the image distance from the second lens.) final position cm magnification...

  • part 1: A converging lens (f = 10.8 cm) is located 32.0 cm to the left...

    part 1: A converging lens (f = 10.8 cm) is located 32.0 cm to the left of a diverging lens (f = -7.80 cm). A postage stamp is placed 43.9 cm to the left of the converging lens. (a) Locate the final image of the stamp relative to the diverging lens. (b) Find the overall magnification. part 2: Two identical diverging lenses are separated by 16 cm. The focal length of each lens is -5.1 cm. An object is located...

  • Part A and B A diverging lens with a focal length of 14 cm is placed...

    Part A and B A diverging lens with a focal length of 14 cm is placed 11 cm to the right of a converging lens with a focal length of 20 cm . An object is placed 41 cm to the left of the converging lens. Where will the final image be located? Express your answer using two significant figures. EVO ALQ * R O 2 ? d= cm to the left of the diverging lens Submit Request Answer Part...

  • A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal...

    A 1.00-cm-high object is placed 4.85 cm to the left of a converging lens of focal length 8.20 cm. A diverging lens of focal length - 16.00 cm is 6.00 cm to the right of the converging lens. Find the position and height of the final image. position cm height cm Is the image inverted or upright? O upright inverted Is the image real or virtual? Oreal virtual

  • Part A: A diverging lens has of focal length of 15.0 cm. An object is placed...

    Part A: A diverging lens has of focal length of 15.0 cm. An object is placed 21 cm to the left of the lens. a) draw a ray diagram showing the situation. b) find the location of the image produced by the lens (mind the signs). Part B: A converging lens is located 30 cm to the right of the previously mentioned diverging lens (part A). As a result, the image you found in part (a) is now instead located...

  • An object is placed 45 cm to the left of a converging lens of focal length...

    An object is placed 45 cm to the left of a converging lens of focal length 17 cm. A diverging lens of focal length −29 cm is located 11 cm to the right of the first lens. (Consider the lenses as thin lenses). a) Where is the final image with respect to the second lens?cm b) What is the linear magnification of the final image?

  • A diverging lens of focal length –30.0 cm is placed 25.0 cm behind a converging lens...

    A diverging lens of focal length –30.0 cm is placed 25.0 cm behind a converging lens of focal length 60.0 cm. A real, upright object of height 2.00 cm is placed 20.0 cm in front of the converging lens. (a) Determine the location of the final image. (Clearly state the location of the final image.) (b) Determine the size and the nature of the final image.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT