Question

M4.3 Load capacity of beam-strut structure scenes The structure supports a distributed load of w. The limiting stress in rod

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Ans Calculate (6) I limit = 340 =170 Here, Fors=2 fois 2 in r= 170 mpa] calculate (TB), To = 1 / 2 - 0 so, An= 4(71)2 = 4X24)Now, EF n = 0; -C ₂ - Wt Fi sin (50.81)=0 -ca - 1245.19 + 90 257.97x sin (5081) = 0 n=68709.68N { Fy=0; Cy- Fi cos (50.81)=0

Add a comment
Know the answer?
Add Answer to:
M4.3 Load capacity of beam-strut structure scenes The structure supports a distributed load of w. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • M4.3 Load capacity of beam-strut structure scenes The structure supports a distributed load of w. The...

    M4.3 Load capacity of beam-strut structure scenes The structure supports a distributed load of w. The limiting stress in rod (1) is 330 MPa, and the limiting stress in each pin is 200 MPa. If the minimum factor of safety for the structure is 2.20, determine the maximum distributed load magnitude w that may be applied to the struct the stresses in the rod and pins at the maximum w. 1 m 14-mm-diam. pin e plus double shear 12-mm-diam. rod...

  • scenes M4.3 Load capacity of beam-strut structure The structure supports a distributed load of w. The...

    scenes M4.3 Load capacity of beam-strut structure The structure supports a distributed load of w. The limiting stress in rod (1) is 380 MPa, and the limiting stress in each pin is 220 MPa. If the minimum factor of safety for the structure is 1.60, determine the 2 m maximum distributed load magnitude w that may be applied to the structure plus the stresses in the rod and pins at the maximum w. 14-mm-diam. pin Home Chap 1. Stress Chap...

  • Beam AB is supported as shown in the figure. Tie rod(1) has a diameter of...

    Beam AB is supported as shown in the figure. Tie rod (1) has a diameter of 60 mm, and it is attached at B and C with 24 mm diameter double-shear pin connections. The pin connection at A consists of a 37 mm diameter single-shear pin. The pins at A, B, and C each have an ultimate shear strength of 500 MPa, and tie rod (1) has a yield strength of 280 MPa. A uniformly distributed load of w is applied to...

  • A pin-connected beam AC shown in Figure is supported by 1.6m of strut BD. The beam is subjected t...

    A pin-connected beam AC shown in Figure is supported by 1.6m of strut BD. The beam is subjected to uniformly distributed load of 20 kN/m at 2.5m from A and an inclined concentrated load of 30 KN with 30℃ angle at respectively. The beam has a constant cross-sectional area of Abm = 0.004 m2 and the strut has a constant cross sectional area of Ast = 0.002 m2 respectively. The diameter of all pins is 20 mm. I. Determine the resultant...

  • The rigid structure ABD issupported at B by a 36-mm-diameter tie rod (1) and at...

    The rigid structure ABD is supported at B by a 36-mm-diameter tie rod (1) and at A by a 29-mm-diameter pin used in a single shear connection. The tie rod is connected at B and C by 24-mm-diameter pins used in double shear connections. Tie rod (1) has a yield strength of 260 MPa, and each of the pins has an ultimate shear strength of 320 MPa. A concentrated load of P = 50 kN acts as shown at D....

  • Beam AB is supported as shown in the figure. Tie rod (1) has a diameter of...

    Beam AB is supported as shown in the figure. Tie rod (1) has a diameter of 58 mm ,and it is attached at B and Cwith 24 mm diameter double-shear pin connections. The pin connection at A consists of a 40 mm diameter single-shear pin. The pins at A, B, and C each have an ultimate shear strength of 500 MPа ,and tie rod (1) has a yield strength of 280 МРPа . A uniformly distributed load of W is...

  • The A-36 W150x37.1 b that can be applied to the beam without causing the strut to...

    The A-36 W150x37.1 b that can be applied to the beam without causing the strut to buckle or the beam to exceed allowable shear stress. Take F.S. 2. (20 points) steel rod BC has a diameter of 50mm and is used as a strut to support the eam. Determine the maximum intensity w of the uniform distributed load sw 6 m 3 m

  • Chapter 15, Supplemental Question 121 The simply supported beam supports a uniformly distributed load of w-300...

    Chapter 15, Supplemental Question 121 The simply supported beam supports a uniformly distributed load of w-300 lb/ft between supports A and B and a concentrated load of P = 2165 lb at end C. The cross-sectional dimensions of the beam shown in the second figure are b 12 in., t2.50 in.,d-11 in., and tw-2.50 in. Using L-14 ft and xK3 ft, determine the principal stresses and the maximum shear stress acting at point K, which is located at a distance...

  • The below wooden double overhanging beam is under a uniformly distributed load W. The wood is...

    The below wooden double overhanging beam is under a uniformly distributed load W. The wood is weak along the orientation of the grain (or wood cell fibres) that makes an angle of 30° with the horizontal (see figure). The maximum shear stress on a plane parallel to the grain that the wood can sustain is t,max = 5 MPa, and the maximum normal stress of wood is omax = 25 MPa. The Young modulus of this wood is E=15 GPa....

  • 6. The clevis supports a pin. The attached rod is subjected to a tensile load of...

    6. The clevis supports a pin. The attached rod is subjected to a tensile load of 80 kN. If the maximum shear stress the material can support is 20 MPa, determine the required pin diameter to produce a factor of safety of 2.5. (12) 80 kN

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT