Question

consider a feedback control system shown in Fig.1, where

Problem 3 Consider a feedback control system shown in Fig. 1, where s2 +s+4 1. Is the system open-loop stable? 2. Determine the value of the proportional gain K such that the phase margin is Ap 3. What is the gain margin with this gain K? 50

0 0
Add a comment Improve this question Transcribed image text
Answer #1

PROBLEM-3

From a feedback Control system, an open loop transfer function is always given by ---> K*G(s)*H(s)

Now from the above Equation, we can analyze the behavior of the system, regarding which solution is attached.

Tr dins Syste η .gm ce nothing. İs nentioned dback F- Qi(S) HS) Detesminin Jots of Jnis System 5 3135OLTF Transfer Funclon uwere coge IS Ane Gain crossover frequency euiwcn Phase mar Greim Cress aer Frequenc is ne eqenCrain Margim Is oluuoLs co au oted at (4%) at wwcn phase 아dnR System becomes -1日 NouD 3:千S OLTF OLTFI ラ1 1.1594- 0.8625 (G.MJaB = 2 IS94- obtaine d vaue k= 3.45

Add a comment
Know the answer?
Add Answer to:
consider a feedback control system shown in Fig.1, where Problem 3 Consider a feedback control system...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block...

    Spring 2019 3. Given a closed-loop control system with unity feedback is shown in the block diagram. G(s) is the open-loop transfer function, and the controller is a gain, K. 1. (20) Calculate the open-loop transfer function tar →Q--t G(s) (10) Calculate the steady-state error to a step input of the open-loop system. 7. (in Bode Form) from the Bode plot. (10) Calculate the shortest possible settling time with a percentage overshoot of 5% or less. 8. 2. (10)Plot the...

  • Figure 1 Problem 3 For the system shown in the above figure, where G(s) a) Draw...

    Figure 1 Problem 3 For the system shown in the above figure, where G(s) a) Draw a Bode diagram of the open-loop transfer function G(s) when K 10. b) On your plot, indicate the crossover frequencies, PM, and GM. Is the closed-loop system stable with K-10? c) Determine the value of K such that the phase margin is 30°. What are the gain margin and the crossover frequencies with this K? Note: You can finish problems 2-3 with the help...

  • KKKM3473/KKKM3314/KKKM3344 The characteristic polynomial of a feedback control system is given by 5. where K>0. Dete...

    KKKM3473/KKKM3314/KKKM3344 The characteristic polynomial of a feedback control system is given by 5. where K>0. Determine the range of values of K for which the system is stable. (10 marks) The closed loop poles of a second order system are located at points -3.5+1.5t and 6. -3.5-1.51 on the complex plane. Calculate the damped natural frequency, ωd. (10 marks) 7. The Bode plots for a first order dynamic system is shown in Figure 3. Estimate the magnitude and phase when...

  • b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b)....

    b) The Nyquist plot of a unity feedback control system is as shown in Figure Q5(b). Nyqulst Diagram x 10 1.5 1- System: N Real: -9.08e-005 0.5- Imag: -5.62e-006 Frequency (rad/sec): -104 -0.5 -15 -1.5 0.5 0.5 1.5 1 2.5 3.5 Real Axis x 10 Figure Q5(b) K If the transfer function of the system is given as G(s) (s+10)(s+50)(s+150) determine the following: The closed loop stability of the system using Nyquist Stability Criterion. i) ii) Gain margin and phase...

  • Question 3 (10 +10+10+15 45 marks) E(s) C(s) R(s) Figure 3: Unity feedback control system for Question 3 For the unity...

    Question 3 (10 +10+10+15 45 marks) E(s) C(s) R(s) Figure 3: Unity feedback control system for Question 3 For the unity feedback control system shown in Figure 3, 100 G(S) (s+2)(+10) Page 3 of 7 NEE3201 Examination Paper CRICOS Provider No: 00124k a) Determine the phase margin, the gain crossover frequency, the gain margin, the phase crossover frequency of the system when Gc(s)-1, 10 marks) b) Design a proportional controller Gc(s)-K so that a phase margin of 50° is achieved....

  • 1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controll...

    1. Consider the usual unity-feedback closed-loop control system with a proportional-gain controller Sketch (by hand) and fully label a Nyquist plot with K-1 for each of the plants listed below.Show all your work. Use the Nyquist plot to determine all values of K for which the closed-loop system is stable. Check your answers using the Routh-Hurwitz Stability Test. [15 marks] (a) P(s)-2 (b) P(s)-1s3 (c) P(s) -4-8 s+2 (s-2) (s+10) 1. Consider the usual unity-feedback closed-loop control system with a...

  • 1- Consider the block diagram of a control system shown in Fig. 1 Rts) E ts) C(s) Gt-11027 20s Fi...

    1- Consider the block diagram of a control system shown in Fig. 1 Rts) E ts) C(s) Gt-11027 20s Fig. 1 a) Find the open-loop transfer function of the system. b) Determine the system type and open-loop gain in terms of K and K, c) Find the steady-state errors of the system in terms of K and K,when the following reference inputs are applied: a. Unit ramp reference input: ) b. Parabolic reference input: r() 1- Consider the block diagram...

  • Can anyone please help me to solve the problem. Appreciate your help. Thank you. Y(s) Fig. 3 Consider a feedback control system shown in Fig. 3 where: 20000 G(s) - (s2+6s 8) (s 20) a) Sketch the asym...

    Can anyone please help me to solve the problem. Appreciate your help. Thank you. Y(s) Fig. 3 Consider a feedback control system shown in Fig. 3 where: 20000 G(s) - (s2+6s 8) (s 20) a) Sketch the asymptotic Bode plot. b) Plot the Bode plot by use of MATLAB Y(s) Fig. 3 Consider a feedback control system shown in Fig. 3 where: 20000 G(s) - (s2+6s 8) (s 20) a) Sketch the asymptotic Bode plot. b) Plot the Bode plot...

  • Problem 3 Consider the transfer function: 108 (s2 5s +100) (s + 1000)2 G(s) 1. Sketch...

    Problem 3 Consider the transfer function: 108 (s2 5s +100) (s + 1000)2 G(s) 1. Sketch the bode diagram for G. 2. Knowing that a proportional controller with gain 1000 in a unity feedback loop with G results in an unstable system, what are the phase and gain margins of G? 3. Design a proportional controller that achieves a gain margin of 40dB. gain of 10dB at 0.01rad/s and a gain margin 4. Design that is infinity. compensator that results...

  • 3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given...

    3. For the feedback control system shown in Figure Q3 below, the forward-path transfer function given by G(s) and the sensor transfer function is given by H(s). R(s) C(s) G(s) H(s) Figure Q3 It is known that G(s) -- K(+20) S(+5) H(s) = and K is the proportional gain. (S+10) i. Determine the closed-loop transfer function and hence the characteristic equation of the system. [6 marks] ii. Using the Routh-Hurwitz criterion, determine the stability of the closed-loop system. Determine the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT