Question

r е u y C(s) P(s) Figure 2: A unity feedback system. 4 2. In Figure 2, let L(s) = P(s)C(s) = Answer the following: s(s+2) (a)

0 0
Add a comment Improve this question Transcribed image text
Answer #1

(O), Date Paoc No. soli, 108) = P(8) C(8) = 4 SC 8+22 @characteristics equations of system is gisen as It LCS 1 + 4 SC8+2) 2a... Date Page No. Hycol 4 é. tro sino V3 ų xd sin(1380) E A. Tyet) to (C) eoাতঃ 887aZ ect) -t llect)112 2 3 8(t)-yet) 38(t)Dato Page No.. dflun لیناه Tejw will be maximum when (w²-2 + 12 will be minimum Hw) (W2-23712 2(62-22x2W => 46 (w2-2) aw df)

Add a comment
Know the answer?
Add Answer to:
r е u y C(s) P(s) Figure 2: A unity feedback system. 4 2. In Figure...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Problem 2. (20 pts) For the unity feedback system shown in the figure, specify the gain...

    Problem 2. (20 pts) For the unity feedback system shown in the figure, specify the gain K of the proportional controller so that the output y(t) has an overshoot of no more than 10% in response to a unit step. R9010 KG R(S) OF FOY(s) S(s + 2)

  • 22. For the unity feedback system given in Figure P9.1 with G(S) = 5(+ 5)(s +...

    22. For the unity feedback system given in Figure P9.1 with G(S) = 5(+ 5)(s + 11) do the following: [Section: 9.4] a. Find the gain, K, for the uncompensated system to operate with 30% overshoot. b. Find the peak time and K, for the uncompensated system, c. Design a lag-lead compensator to decrease the peak time by a factor of 2, decrease the percent overshoot by a factor of 2, and improve the steady-state error by a factor of...

  • Question 5 or a unity feedback system in Figure 4 C(s) (s+40%s +100) Figure 4 a) Find the value o...

    Question 5 or a unity feedback system in Figure 4 C(s) (s+40%s +100) Figure 4 a) Find the value of gain, K, to yield a closed-loop response with 20% overshoot when the system is under a step input. Check the system stability at this gain value (use either Nyquist criterion or Margins). Assume the system is under a unity step input. Use Simulink to obtain and compare the time responses with and without gain adjustment and discuss how the response...

  • SS10. The unity-feedback system of Figure P11.1 with K (s +4) G (s) (s 2) (s 5) (s +12) is operat...

    SS10. The unity-feedback system of Figure P11.1 with K (s +4) G (s) (s 2) (s 5) (s +12) is operating with 20% overshoot. [Section: 114] a. Find the settling time. b. Find Kp c. Find the phase margin and the phase-margin frequency d. Using frequency response techniques, design a compensator that will yield a threefold improvement in Kp and a twofold reduction in settling time while keeping the overshoot at 20%. SS10. The unity-feedback system of Figure P11.1 with...

  • Compensator Plant 100 R(s) sta Y(s) For the unity feedback system shown in Fig. 3.55, specify t...

    Compensator Plant 100 R(s) sta Y(s) For the unity feedback system shown in Fig. 3.55, specify the gain and pole location of the compensator so that the overall closed-loop response to a unit- step input has an overshoot of no more than 30%, and a 2% settling time of no more than 0.2 sec. Verify your design using Matlab. 3.27 Compensator Plant 100 R(s) sta Y(s) For the unity feedback system shown in Fig. 3.55, specify the gain and pole...

  • Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s...

    Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s)- s(s+3(s6) Design a lag compensation to meet the following specifications The step response settling time is to be less than 5 sec. . The step response overshoot is to be less than 17% . The steady-state error to a unit ramp input must not exceed 10%. Dynamic specifications (overshoot and settling time) can be met using proportional feedback, but a lag compensator is needed...

  • 1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the...

    1. Consider the unity feedback system shown in figure 1 with G(S) -2sti a) Determine the closed loop transfer function TF(s) γ(s) R(s) What are the poles and zeros of TF1(s)? [2 marks] b) For TF(s), calculate the DC gain, natural frequency and damping ratio. Classify TF1(s) as underdamped overdamped, critically damped or undamped [3 marks] c) Use the initial value theorem and final value theorem to determine the initial value (Mo) and final value (M) of the [2 marks]...

  • (b) The unity feedback system is given as in Figure Q3 (b). (i) Determine the closed...

    (b) The unity feedback system is given as in Figure Q3 (b). (i) Determine the closed loop transfer function of the system. (2 marks) 2 CONFIDENTIAL CONFIDENTIAL BEJ 20503/BEH 30603/BEF33003 (ii) Calculate the damping ratio š, peak time Tp, rise time Tr, percentage of overshoot%\ls and settling time Ts (5% criterion) of the system. (11 marks) Investigate the characteristic of the system response. (1 marks) (iii) R(s)+ E(s) C(s) 25 s(s + 6) Figure Q3(b)

  • 13. Consider the unity feedback system of Figure P11.1 with G(s) s(s+5s 20) The uncompensated sys...

    13. Consider the unity feedback system of Figure P11.1 with G(s) s(s+5s 20) The uncompensated system has about 55% overshoot and a peak time of 0.5 second when K 10. Do the following: [Section: 11.4] . Use frequency response methods to design a lead compensator to reduce the percent overshoot to 10%, while keeping the peak time and steady-state error about the same or less. Make any required second-order approximations. b. Use MATLAB or any other computer MATLAB ML program...

  • 4) A unity feedback control system shown in Figure 2 has the following controller and process with the transfer functions: m(60100c Prs(s +10(s+7.5) a) Obtain the open- and closed-loop transfer f...

    4) A unity feedback control system shown in Figure 2 has the following controller and process with the transfer functions: m(60100c Prs(s +10(s+7.5) a) Obtain the open- and closed-loop transfer functions of the system. b) Obtain the stability conditions using the Routh-Hurwitz criterion. e) Setting by trial-and-error some values for Kp, Ki, and Ko, obtain the time response for minimum overshoot and minimum settling time by Matlab/Simulink. Y(s) R(s) E(s) Fig. 2: Unity feedback control system 4) A unity feedback...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT