Question

A brass rod, 1 cm in diameter and 15 cm long, with a tip subject to a breeze with a convection coefficient of 68 W/m2 K in a room where the ambient air temperature is 23°C. The base is 79°C and the tip is designed to maintain a constant temperature of 29°C. The manufacturer finds that the thermal conductivity, in units of W/m*K, to be k(T) 43*In(T)- 128, where T is in units of Kelvin. Plot the temperature profile for the entire length of the rod. Submit a copy of any code or analysis used to find the temperature profile. Hint: As an approximation, take k to be the value at the average temperature between the base and the tip.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

enData l: 15 C) Ti oh m TD- Too 6.93 c39.W61 C 0.15グーD1 Te Ча.fl

5,5 C kA 6/%

Add a comment
Know the answer?
Add Answer to:
A brass rod, 1 cm in diameter and 15 cm long, with a tip subject to...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A brass rod (k = 133 W/m-K) with a diameter of 5 mm and a length...

    A brass rod (k = 133 W/m-K) with a diameter of 5 mm and a length of 100 mm is used to enhance heat transfer from a surface which is maintained at 200 C. The cylindrical surface of   the rod is exposed to a convection environment with h = 30 W/m2-K and an ambient temperature of 20 C.        a) Calculate the heat convected away from the rod. b) Calculate the temperature 50 mm from the wall. c) Plot the temperature...

  • Problem 3-2 A brass rod 100 mrn long and 5 mm in diameter extends horizontally from...

    Problem 3-2 A brass rod 100 mrn long and 5 mm in diameter extends horizontally from a casting at 203°C. The rod is in an air environment with T-25°C and h- 30 W/m2K. Determine the temperature of the rod 75 and 100 mm from the casting. The thermal conductivity of brass is 133 W/mK

  • One end of a long rod 3 cm in diameter is inserted into a furnace with the

    One end of a long rod 3 cm in diameter is inserted into a furnace with the (3 outer end projecting into the outside air. Once the steady state is reached the temperature of the rod is measured at two points, 15 cm apart and found to be 140°C and 100°C, when the atmospheric air is at 30°C with convection coefficient of 20 W/m2.K. Calculate the thermal conductivity of *.the rod material Consider a stainless steel spoon(k = 15.1 W/m.K), partially...

  • A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process

    A very long rod of 5-mm diameter and uniform thermal conductivity k = 25 W/m-K is subjected to a heat treatment process. The center, 30-mm-long portion of the rod within the induction heating coil experiences uniform volumetric heat generation of 7.5 x 106 W/m3. The unheated portions of the rod, which protrude from the heating coil on either side, experience convection with the ambient air at T∞ = 20 °C and h = 10 W/m2K. Assume that there is no convection...

  • A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.

    A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100°C. The ambient air temperature is 25°C and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...

  • A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform...

    A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform volumetric heat generation of 25,000 W/m3. The rod is encapsulated by a circular sleeve having 7 W/m K. The outer surface of the sleeve is exposed to cross flow of air at 25°C with a convection coefficient of 25 W/m2-K. Find the temperature at the interface between the rod and sleeve, and on the outer surface. an outer diameter of 410 mm and thermal...

  • A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...

    A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generation of 5.0 x 10 W/m². The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/mK. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2K (a) Find the temperature at the Interface between the rod and sleeve...

  • P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is...

    P2) (50 pts.) A sphere of radius , and thermal conductivity of k=0.1 W/ mK is generating heat at a constant rate in W/m] inside another sphere of radius ry. The radius of the internal sphere is a 10 cm and the radius of the outer sphere is 40 cm. The outer surface is exposed to ambient air at 27°C and a convection coethicient -30 W/m-K. The thermal conductivity of the external sphere is 6.0 W/m-K. If the temperature at...

  • A rod of 10-mm diameter and 250-mm length has one end maintained at 100°C

    A rod of 10-mm diameter and 250-mm length has one end maintained at 100°C. The surface of the rod experiences free convection with the ambient air at 25°C and a convection coefficient that depends on the difference between the temperature of the surface and the ambient air. Specifically, the coefficient is prescribed by a correlation of the form, hfc = 2.89[0.6 +0.624(T - T∞)1/6]2, where the units are hfc (W/m².K) and T (K). The surface of the rod has an...

  • QUESTION 4 The temperature distribution for a long fin with uniform cross section is cosh[m(L -...

    QUESTION 4 The temperature distribution for a long fin with uniform cross section is cosh[m(L - x)] cosh(ml) where b means base, O = T - To, m= rand A and P are the area and perimeter of the cross- section. K is in air at A long copper rod of diameter D = 1.5 cm, L = 20 cm, and thermal conductivity 380 W/ m 20°C. The temperature at the base is 150°C. If m = 6 m-7, the...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT