Question

Use a simple Brayton cycle gas turbine as the baseline for the following questions. Use a cold-air-standard analysis (R=0.287 kJ/kg-K, k=Cp/Cv=1.40, Cp= (k/(k-1))*R = 1.0045 kJ/kg-K) with the following specifications:

Use a simple Brayton cycle gas turbine as the baseline for the following questions. Use a cold-air-standard analysis (R=0.287

0 0
Add a comment Improve this question Transcribed image text
Answer #1

givon data ñ = 500 Kgis , V=1.4, CR=1.0045 K9719-K Ti = 300K R=0.284 1971C9k. Cop) = pressure Dato: 30- *T3 = 1800 na = 85%. .: actual works output ni Wactual CT3-tý) - wideal (73-74) 09= ( 1800-70) (1800 -68114). ta - 493.02 K ] .. wacheval = miHighTheat Transfer Pin a mi cp CT3-Tas Dina SVO X1.0054(1800-879:64) I Pin = 462.66 mol Low Theat Toomster Poct = cp CTá-70)

Add a comment
Know the answer?
Add Answer to:
Use a simple Brayton cycle gas turbine as the baseline for the following questions. Use a...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy...

    A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency....

  • Need help for this Brayton Cycle problem. Please help me 4. (30 marks) A gas-turbine power plant operates on the simple...

    Need help for this Brayton Cycle problem. Please help me 4. (30 marks) A gas-turbine power plant operates on the simple Brayton cycle between the pressure limits of 100 kPa and 800 kPa. The T-s diagram of this cycle is shown in Fig. 2. Air enters the compressor at 30°C and leaves at 330°C at a mass flow rate of 200 kg/s. The maximum cycle temperature is 1400 K. During operation of the cycle, the net power output is measured...

  • A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for...

    A combined cycle gas turbine/vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output of each turbine, and the overall efficiency. --Given Values--...

  • 1.) Consider the gas turbine with air-standard Brayton cycle shown below Temperature, T and Pressure, P...

    1.) Consider the gas turbine with air-standard Brayton cycle shown below Temperature, T and Pressure, P are measured at the following points in the cycle: Turbine: input: TH = 1200 K, PH = 800 kPa output: TL = 662.4 K, PL = 100 kPa Compressor: input Tc = 300 K, Pc = 100 kPa output: Th = 543.4 K, Ph = 800 kPa Note: the working fluid is air which has Cp = 1.005 kJ/kg.K, k = 1.4, R =...

  • WGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor ...

    wGTC η.cn = 95% Gas turbine cycle (GTc) e,I = 100 kW Compressor Turbine Generator 께,- Combustor Pi 100 kPa Regenerator Evaporator Turbine Generator Vapor turbine cycde (VTC) T, = T, + 20 K Condenser 10 Pump Saturated liquid A combined cycle plant operates with a topping gas turbine and a bottoming vapor turbine cycle. The working fluid in the vapor turbine cycle is water. The gas turbine cycle (GTC) electric generator produces 100kW of electric power For air use...

  • 1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45...

    1. (10 points) A combined gas turbine-vapor power plant has a net power output of 45 MW. Air enters the compressor of the gas turbine at 100 kPa, 300 K, and is compressed to 1200 kPa. The isentropic efficiency of the compressor is 84%. The condition at the inlet to the turbine is 1200 kPa, 1400 K. Air expands through the turbine, which has an isentropic efficiency of 88%, to a pressure of 100 kPa. The air then passes through...

  • please show work for all sub parts A combined cycle gas turbine / vapor power plant...

    please show work for all sub parts A combined cycle gas turbine / vapor power plant uses the turbine exhaust as the energy source for the boiler. Each power system uses a single turbine. The gas power system is modeled as an ideal air-standard Brayton cycle. The vapor power system is modeled as an ideal Rankine cycle. Given specific operating conditions determine the temperature and pressure at each state, the rate of heat transfer in the boiler, the power output...

  • A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300...

    A centrifugal air compressor used in a gas turbine receives air at 100 kPa and 300 K and discharges it at 400 kPa and 500 K. The velocity of the compressor's outgoing air is 100 m / s. Ignoring the speed at the compressor inlet. Determine the power required to drive the compressor, in kW, if the mass flow is 15 kg / s. Take the Cp of air equal to 1 kJ / (kg K) and assume that there...

  • Air enters the turbine stage 1 of a gas turbine with reheat at 1200 kPa, 1200...

    Air enters the turbine stage 1 of a gas turbine with reheat at 1200 kPa, 1200 K, and expands to 100 kPa in two stages. Between the turbine stages, the air is reheated at a constant pressure of 350 kPa to 1200 K. ein lin Combustor Reheat combustor T. = 881.4K To = 1200 K Po = 350 kPa b 2 3 a Turbine stage 2 Turbine stage 1 T3 = 1200 K P3 = 1200 kPa Compressor h4 =...

  • 1). A simple Rankine cycle uses water as the working fluid. Saturated vapor enters the turbine...

    1). A simple Rankine cycle uses water as the working fluid. Saturated vapor enters the turbine at 8.0 MPa and saturated liquid water exists the condenser at a pressure of 8.0 kPa. The net power output of the cycle is 100MW Determine: a. The thermal efficiency b. The work ratio c. The mass flow rate of the steam in kg/min d. The rates of heat transfer into/from the working fluid as it passes through the boiler and condenser, respectively, in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT