Question

The point in the space charge layer at which E E, is referred to as the intrinsic point. At this point, n p n. Show that the intrinsic point lies on the side of the space charge layer with the lower doping concentration.

EI = intrinsic level ( EC + EV )/2

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
EI = intrinsic level ( EC + EV )/2 The point in the space charge layer...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Draw the band diagram (the relative positions of conduction band edge EC, valence band edge Ev,...

    Draw the band diagram (the relative positions of conduction band edge EC, valence band edge Ev, Fermi level EF) for the four following cases. Clearly note EC −EF, EF −EV, Ei −EF, EG = EC −EV. Ei is the intrinsic Fermi level. Take NC=NV =1025 m−3, EG=1.1 eV, ni=1.5×1016 m−3, kT=0.026 eV. (Q1.1) p-type, NA=5×1023 m−3. (Q1.2) p-type, NA=5×1021 m−3. (Q1.3) n-type, ND=5×1023 m−3. (Q1.4) n-type, ND=5×1021 m−3. Q2 Draw the band diagram (the relative positions of conduction band edge...

  • P3. (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at T =...

    P3. (a) Determine the position of the Fermi level with respect to the intrinsic Fermi level in silicon at T = 300'K that is doped with phosphors atoms at a concentration of 1015 cm. (b) Repeat (a) if the silicon is doped with boron atoms at a concentration of 10'5 cm3. (c) Calculate the electron concentration in the silicon for parts (a) and (b) P1. For the Boltzmann approximation to be valid for a semiconductor, the Fermi level must be...

  • 3. Silicon samples with band-gas 1.1 eV at 300 Kelvin, are doped at four different levels...

    3. Silicon samples with band-gas 1.1 eV at 300 Kelvin, are doped at four different levels and have the properties listed below. Case 1: Case 2: Case 3: Case 4: Ex-Ey = 0.15 eV Ef-Ey=0.88 eV EF-Ey = 0.55 eV Ex-Ey = 1.09 eV The four cases above show the position of the Fermi Level Er relative to the valence band edge Ev.at dilterent doping levels. a) identify each sample as degenerate and nondegenerate. b) which nondegenerate case shows heavy...

  • (a) Assuming that the Fermi level is at the midgap in the intrinsic silicon, calculate the...

    (a) Assuming that the Fermi level is at the midgap in the intrinsic silicon, calculate the probability of finding an electron at the bottom of the conduction band (E=Ec) for three different temperatures: 0K, 20C, 100C? (b) How are these probabilities related to the probabilities of finding a hole at E=Ev, which is the top of the valence band? (c) A sample of silicon is doped with 1016 cm-3 of arsenic and 3x1016 cm-3 of boron. Calculate n, p, and...

  • A p-n junction is created by doping the right side of a piece of silicon with...

    A p-n junction is created by doping the right side of a piece of silicon with 1014 atoms/cm3 of phosphorus and the left side with 1018 atoms/cm3 of boron. Assume that the dopants are fully ionized, and assume the junction is at x = 0 with x+ pointed to the right. a) Plot by hand (roughly to scale) an energy band diagram of the junction and label EGAP, EC, EV, EF and EFi. Using the effective density of states, calculate...

  • Draw the energy band diagram at equilibrium for the p+ /n/p semiconductor heterostructure (p+ indicates a...

    Draw the energy band diagram at equilibrium for the p+ /n/p semiconductor heterostructure (p+ indicates a p-type semiconductor which is heavily doped, i.e., more heavily doped than p). You should indicate Ec (conduction band), Ev (valence band), Ei (intrinsic Fermi level), and Ef (Fermi level) throughout the device structure. show your work (i.e., you should start from the diagram of individual material pieces). State any reason for your drawing.

  • 33.8 Problems biting the atom drops from an energy level of Ei--10.64 eV to an energy...

    33.8 Problems biting the atom drops from an energy level of Ei--10.64 eV to an energy level of 12.70 eV 33.1 A photon is emitted by an atom when one of the electrons or- (a) What is the energy of this photon (in eV)? (b) What is the energy of this photon (in D? (c) What is the frequency of this photon? (d) What is the wavelength of this photon? (e) What is the momentum of this photon? 33.2 The...

  • 2. If a silicon sample has E - Ef = 0.28 eV what is its type...

    2. If a silicon sample has E - Ef = 0.28 eV what is its type and minority carrier concentration? [2 pts.] Please only answer if you are CONFIDENT that your answer is correct, thanks 2. If a silicon sample has Ec-Er = 0.28 eV what is its type and minority carrier concentration? [2 pts.] a. n-type; 7x10'cm*, b. p-type; 1.5x10 cm c. n-type: 3.2x10 cm d. p-type; 3.2x10 cm

  • Here are the equations to use: Use Eq. (2) below to calculate the intrinsic number density...

    Here are the equations to use: Use Eq. (2) below to calculate the intrinsic number density of conduction electrons in Si at a temperature of 405 K. You may use the values of effective mass mp 1.04mo. 09m1 where m is the mass of a free electron and the band gap energy value E- 1.12 ev, The conductivity of a semiconductor material can be expressed by where q is the elementary charge, n the number density of conduction electrons, μη...

  • Problem1 10" ㎝aandn-side Callibrium at 3000 K has ap side dup ing of NA-2 doping of ND-101 cm Ca...

    Problem1 10" ㎝aandn-side Callibrium at 3000 K has ap side dup ing of NA-2 doping of ND-101 cm Calculate: (a) The contact potential (also called built-in voltage) (b) The depletion layer width at the p-side and n-sides, and the total depletion layer width. (c) The electric field at the metallurgical junction. (d) The potential at the metallurgical junction. (e) Make sketches of the charge density, electric field and electrostatic potential as a function of position, that are roughly to scale....

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT