Question

Genotype Total #of #of Individuals Genotype Allele Allele Individuals in Parent Frequency Population # of Alleles Total # of

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Genotype frequency of DD= 27/(27+48+15) = 0.3%

Genotype Frequency of Dr=48/(27+48+15)=0.53%

Genotype Frequency of rr=15/(27+48+15)=0.16%

Allele Frequency of D=[(2*27)+48]/180=0.56

Allele Frequency of r=[(2*15)+48]/180=0.43

Total frequency of alleles in parent population=180

Add a comment
Know the answer?
Add Answer to:
Genotype Total #of #of Individuals Genotype Allele Allele Individuals in Parent Frequency Population # of Alleles...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • In a population of Mendel's garden peas, the frequency of the dominant A (purple flower) allele...

    In a population of Mendel's garden peas, the frequency of the dominant A (purple flower) allele is 80%. Letp represent the frequency of the A allele and q represent the frequency of the a allele. Assuming that the population is in Hardy-Weinberg equilibrium, what are the genotype frequencies? A. 16% AA, 40 % Aa, 44 % aa B. 80% AA, 10 % Aa, 10 % aa C. 50 % AA , 25 % As , 25 % aa * E....

  • Calculating expected genotypic frequencies and individuals in a population from allele frequencies: 3.1 In a population...

    Calculating expected genotypic frequencies and individuals in a population from allele frequencies: 3.1 In a population of peas, the frequency of the dominant allele for a purple flower is 0.77 and the frequency of the recessive allele for a white flower is 0.23. What would the genotypic frequencies be if the population is in equilibrium? _____   = Frequency of homozygous dominant individuals _____   = Frequency of heterozygous individuals _____   = Frequency of homozygous recessive individuals How many individuals would you...

  • The occurrence of the NN blood group genotype in the US population is 1 in 400,...

    The occurrence of the NN blood group genotype in the US population is 1 in 400, consider NN as the homozygous recessive genotype in this population. You sample 1,000 individuals from a large population for the MN blood group, which can easily be measured since co-dominance is involved (i.e., you can detect the heterozygotes). They are typed accordingly: BLOOD TYPE GENOTYPE NUMBER OF INDIVIDUALS RESULTING FREQUENCY M MM 490 0.49 MN MN 420 0.42 N NN 90 0.09 Using the...

  • 1. You are studying a population of sandblossoms (Linanthus parryae) that has individuals with blue and...

    1. You are studying a population of sandblossoms (Linanthus parryae) that has individuals with blue and white flowers. The allele for white flowers (A) is dominant to the allele for blue flowers (a). In the population you survey, 91 out of 100 individuals have white flowers. Based on this information: a. Calculate the frequency of the A and a alleles. b. Calculate the numbers of each genotype. 2. A population of snapdragons (Antirrhinum hispanicum) has two additive alleles for flower...

  • In a population, you observe 300 homozygous dominant (AA) individuals, 400 heterozygous (Aa) individuals, and 300...

    In a population, you observe 300 homozygous dominant (AA) individuals, 400 heterozygous (Aa) individuals, and 300 homozygous recessive (aa) individuals. Please show all your work while answer the following questions. What are the observed allele frequencies for this population? • observed dominant allele (A) frequency: • observed recessive allele (a) frequency: What are the observed genotype frequencies for this population? • observed homozygous dominant (AA) genotype frequency: • observed heterozygous (Aa) genotype frequency: • observed homozygous recessive (aa) genotype frequency:...

  • 5)If the recessive allele, a, has a frequency of 0.18 how many AA individuals are there...

    5)If the recessive allele, a, has a frequency of 0.18 how many AA individuals are there in a randomly mating population of 377 individuals? (rounded up to the nearest whole individual) 6)  The Himalayan colour pattern in rabbits is controlled by a single locus with three alleles; F for full colour, H for Himlalayan and A for albino. The F allele is dominant over the H and A alleles while the H allele is dominant over the A allele. If the...

  • 1.)If the population frequencies of two alleles at a locus are B = 0.5 and b...

    1.)If the population frequencies of two alleles at a locus are B = 0.5 and b = 0.5, what is onepossible set of frequencies for the three resulting genotypes that would NOT reflect Hardy- Weinberg equilibrium? 2.)In a population that is in Hardy-Weinberg equilibrium, the frequency of the homozygous recessive genotype is 0.09. What is the frequency of individuals that are homozygous for the dominant allele? 3.)In humans, Rh-positive individuals have the Rh antigen on their red blood cells, while...

  • The Hardy-Weinberg principle and its equations predict that frequencies of alleles and genotypes remain constant from generation to generation in populations that are not evolving

    .1. The Hardy-Weinberg principle and its equations predict that frequencies of alleles and genotypes remain constant from generation to generation in populations that are not evolving. What five conditions does this prediction assume to be true about such a population? a._______  b._______  c._______  d._______  e._______  2. Before beginning the activity, answer the following general Hardy-Weinberg problems for practice (assume that the population is at Hardy-Weinberg equilibrium).a. If the frequency of a recessive allele is 0.3, what is the frequency of the dominant...

  • 1 B allele frequency = Question 7 1.5 pts The total number of individuals in the...

    1 B allele frequency = Question 7 1.5 pts The total number of individuals in the population is 1000 shmoos. Using one of the equations below, fill in table below with the observed genotype frequencies and number of individuals with those genotypes. Allele b frequency = 0.3. Equations: p2 + 2pq+q2 = 1 200+ p +q = 1 bb 1 BB Observed Genotype Frequencies Observed Individuals / / N / / Question 8 2 pts

  • Case B: In this population, the frequency of the dominant allele, B, is 0.5 and the...

    Case B: In this population, the frequency of the dominant allele, B, is 0.5 and the frequency of the recessive allele, b, is 0.5. However, in this situation any individual who is born with the dominant trait has a 50 % chance of not surviving to reproductive age. Assuming that mating is still random, what will happen to the allele frequencies (p and q) after 5 generations? (le. Will one allele increase or decrease?) Prediction (1 mark): Reason (2 marks):...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT