Question

4. An exothermic material is encased in a 1-m-long thin tubular sleeve. The material generates heat at a steady rate of 4800

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer: Given that length im. Heat at a steady orate 4 - 48004 Thermal conductivitu k = 22 w imk CD Given that, Radius 7 : 30To = Twit qr BK Tc = 60 + 4800XIV 8x22 Tc = 87,27°C center temperature is 87,27c. (b)) Efficiency of fin :- mis home - KETA mRequired Surface area AS - - h (Ts-Ta) hore Surface temperature maintained 40° As - 4800x ( 77 xD . 78 (40-20) As = 4800 x1 :

Add a comment
Know the answer?
Add Answer to:
4. An exothermic material is encased in a 1-m-long thin tubular sleeve. The material generates heat...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 7...

    G4 Problem Statement: Circular fins of uniform cross section, with diameter of 14 mm and length 70 mm are attached to the wall with surface temperature o C. The fin is made of material with thermal conductivity of 210 W/mk, and exposed to an ambient air condition of 24 °C and the convection heat transfer coefficient of 190 W/m2k. f 300 1- Plot the temperature variation for the following boundary conditions a- Infinitely long fin b- Adiabatic fin tip c-...

  • Annular aluminum fins of rectangular profile are attached to a circular tube having an outside diameter...

    Annular aluminum fins of rectangular profile are attached to a circular tube having an outside diameter of 50 mm and an outer surface temperature of 400°C. The fins are mm thick and 20 mm long. The system is in ambient air at a temperature of 20°C, and the surface convection coefficient is 40 W/ mK. (a) What are the fin efficiency and effectiveness? (b) If there are 125 such fins per meter of tube length, what is the rate of...

  • It's a heat transfer question. The chip is square with dimensions 15mm by 15mm and 5mm...

    It's a heat transfer question. The chip is square with dimensions 15mm by 15mm and 5mm thickness with constant temperature Tc = 87 degrees C. At the top surface, 20 pin fins with convective ends are attached to the chip. The diameter of each fin, Dp = 1.5 mm, the length of each fin, Lp = 15 mm, and the thermal conductivity Kp = 400W/mK (For chip and fins). The convection coefficient, h = 50 W/(m2·K), and fluid temperature of...

  • blem 4 (20 pts) A square chip that is 12.7mm on a side has a maximum allowable chip operating temperature -75°C. To dissipate heat produced in the chip, a 4 x 4 array of copper (k-400 W/m.K) pin fins...

    blem 4 (20 pts) A square chip that is 12.7mm on a side has a maximum allowable chip operating temperature -75°C. To dissipate heat produced in the chip, a 4 x 4 array of copper (k-400 W/m.K) pin fins is proposed to be etallurgically joined to the outer surface of the chip. The convection coefficient is h-250 W/m'K and ambient air mperature isTo-20°C. The pin fin dimeter is D,-1.5mm and length is L,-16mm. Assuming steady-state uniform chip temperature Te-75°C and...

  • A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform...

    A long cylindrical rod of diameter 100 mm with thermal conductivity of 0.5 W/mK experiences uniform volumetric heat generation of 5.0 x 10 W/m². The rod is encapsulated by a circular sleeve having an outer diameter of 400 mm and a thermal conductivity of 4 W/mK. The outer surface of the sleeve is exposed to cross flow of air at 27°C with a convection coefficient of 25 W/m2K (a) Find the temperature at the Interface between the rod and sleeve...

  • Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity...

    Heat is uniformly generated at the rate of 2x 10W/m* in a wall of thermal conductivity 25 W/m-K and thickness 60 mm. The wall is exposed to convection on both sides, with different heat transfer coefficients and temperatures as shown. There are straight rectangular fins on the right-hand side of the wall, with dimensions as shown (L =20 mm) and thermal conductivity of 250 W/m-K. What is the maximum temperature that will occur in the wall? L tt-2 mm k=25...

  • A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform...

    A long cylindrical rod of diameter 220 mm with thermal conductivity 0.5 W/m-K expe riences uniform volumetric heat generation of 25,000 W/m3. The rod is encapsulated by a circular sleeve having 7 W/m K. The outer surface of the sleeve is exposed to cross flow of air at 25°C with a convection coefficient of 25 W/m2-K. Find the temperature at the interface between the rod and sleeve, and on the outer surface. an outer diameter of 410 mm and thermal...

  • It's a heat transfer question. The chip is square with dimensions 15mm by 15mm and 5mm...

    It's a heat transfer question. The chip is square with dimensions 15mm by 15mm and 5mm thickness with constant temperature Tc = 87 degrees C at the bottom of the chip. At the top surface, 20 pin fins with convective ends are attached to the chip. Above the chip, we have the 20 fins plus we also have the exposed board area, which is total area of the chip minus the base area of the 20 fins. The diameter of...

  • A plane wall is composed of two materials. Material A has a uniform heat generation of...

    A plane wall is composed of two materials. Material A has a uniform heat generation of 100 kW/m3, a thermal conductivity of 50 W/mK, and a thickness of 10 cm. The inner surface of material A is well insulated. The other surface of material A is connected to Material B which has no generation with a thermal conductivity of 100 W/mK and a thickness of 20 cm. The outer surface of material B is cooled by ambient air at 300...

  • Lecture Assignment #7 A heat sink is composed of an array of rectangular fins. h-63 W/m-K...

    Lecture Assignment #7 A heat sink is composed of an array of rectangular fins. h-63 W/m-K T 35°C a=2 mm b-2 mm FL-14 mm W-24 cm th, 0.75 cm k-35 W/m-K p 8200 kg/m The heat sink is square with base side dimension W 24 cm and base thickness ths- 0.75 cm. The fins are square and have side dimension a 2 mm and length L 14 mm. Fins are separated by a distance b 2 mm. (Note that there...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT