Question

2.20. The eigenvalues of Schrödinger equation for a finite well can be obtained graphically as shown in Fig. 2.13. Start from the eigen functions shown in Equation 2.114, and use the boundary conditions at x = L/2 and x = +L/2 to derive Equation 2.119.

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
2.20. The eigenvalues of Schrödinger equation for a finite well can be obtained graphically as shown...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • Consider the 1D square potential energy well shown below. A particle of mass m is about to be tra...

    Consider the 1D square potential energy well shown below. A particle of mass m is about to be trapped in it. a) (15 points) Start with an expression for this potential energy and solve the Schrödinger 2. wave equation to get expressions for(x) for this particle in each region. (10 points) Apply the necessary boundary conditions to your expressions to determine an equation that, when solved for E, gives you the allowed energy levels for bound states of this particle....

  • Can someone expand on they got the eigenvalues and eigen funtctions? It looks like its a...

    Can someone expand on they got the eigenvalues and eigen funtctions? It looks like its a basic rule in ODE that I just forgot. The left-hand side depends only on t and the right-hand side only on x,so they are both equal to some constant -1 The boundary conditions, ф(0)-0. dL)-0 make the x-dependent ordinary differential equation one of our standard problems, with eigenvalues λ for n=1,2,3, and corresponding Eigen functions ,-sin

  • (1 point) In this problem we find the eigenfunctions and eigenvalues of the differential equation B+...

    (1 point) In this problem we find the eigenfunctions and eigenvalues of the differential equation B+ iy=0 with boundary conditions (0) + (0) = 0 W2) = 0 For the general solution of the differential equation in the following cases use A and B for your constants, for example y = A cos(x) + B sin(x)For the variable i type the word lambda, otherwise treat it as you would any other variable. Case 1: 1 = 0 (1a.) Ignoring the...

  • 1. Infinite potential quantum well. (1) Starting from the Schrödinger equation, please derive the...

    1. Infinite potential quantum well. (1) Starting from the Schrödinger equation, please derive the quantized energy levels and wave functions for an infinite potential quantum well of width D 2 nm. (2) Photon emission wavelength: Please calculate the emitted photon wavelength if an electron falls from the n-2 state into n-l state inside this infinite potential quantum well. (3) Heisenberg uncertainty principle: For the n-2 state of an electron inside an infinite potential well, prove that the Heisenberg uncertainty relation...

  • Consider a potential well defined as U(x) =  for x < 0, U(x) = 0 for 0 < x < L, and U(x) = U0 > 0 for x > L (see the following figure).

    Consider a potential well defined as \(U(x)=\infty\) for \(x<0, U(x)=0\)for \(0<x<L,\)and \(U(x)=U_{0}>0\) for \(x>L\) (see the following figure). Consider a particle with mass \(m\) and kinetic energy \(E<U_{0}\)that is trapped in the well. (a) The boundary condition at the infinite wall ( \(x=\)0) is \(\psi(x)=0\). What must the form of the function \(\psi(x)\) for \(0<x<L\)be in order to satisfy both the Schrödinger equation and this boundary condition? (b) The wave function must remain finite as \(x \rightarrow \infty\). What must...

  • The Finite Square Wel A more realistic version of the infinite square well potential has a...

    The Finite Square Wel A more realistic version of the infinite square well potential has a finite well depth: -a V(x)--V for -a<x <a for x <-a,'r > a =0 This assignment will consider the bound states of a particle (of mass m) in this potential (i.e. total energy E <0). (1) Determine the general solutions to the time-independent Schrödinger equation for the three regions x <-a, -a<x <a, and > a. Write these solutions in terms of k and...

  • Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well...

    Problem 4.1 - Odd Bound States for the Finite Square Well Consider the finite square well potential of depth Vo, V(x) = -{ S-V., –a sx sa 10, else In lecture we explored the even bound state solutions for this potential. In this problem you will explore the odd bound state solutions. Consider an energy E < 0 and define the (real, positive) quantities k and k as 2m E K= 2m(E + V) h2 h2 In lecture we wrote...

  • 1. Wave equation. Consider the wave equation on the finite interval (0, L) PDE BC where Neumann b...

    1. Wave equation. Consider the wave equation on the finite interval (0, L) PDE BC where Neumann boundary conditions are specified Physically, with Neumann boundary conditions, u(r, t) could represent the height of a fluid that sloshes between two walls. (a) Find the general Fourier series solution by repeating the derivation from class now considering Neumann instead of Dirichlet boundary conditions. Your final solution should be (b) Consider the following general initial conditions u(x, 0)x) IC IC Derive formulas that...

  • 8. The time independent Schrödinger equation (TISE) in one-dimension where m is the mass of the...

    8. The time independent Schrödinger equation (TISE) in one-dimension where m is the mass of the particle, E ita energy, (z) the potential (a) Consider a particle moving in a constant pote E> Vo, show that the following wave function is a solution of the TISE and determine the relationahip betwoen E an zero inside the well, ie. V(2)a 0foros L, and is infinite ou , ie, V(x)-w (4) Assuming (b) Consider an infinite square well with walls at 1-0...

  • 1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a)...

    1. Consider a 1D finite square well potential defined as follows. Vo-a<x<a V(x) = 0otherwise a) What are the energy eigenfunctions n of the Hamiltonian for a single particle bound in this potential? You may write your answer in piece-wise form, with an arbitrary normalization. b) Derive the characteristic equation that the energy eigenvalues E, must satisfy in order to satisfy the eigenvalue equation Hy,-EnUn for eigen function Un c) Write a computer program1 to find the eigenvalues E, for...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT