Question

Air in a piston-cylinder device is compressed from 27°C and 100 kPa to 900 kPa by following a process with Pv14-const. If air
0 0
Add a comment Improve this question Transcribed image text
Answer #1

1.4 loo 2 r 기 the procax is adalout c

Add a comment
Know the answer?
Add Answer to:
Air in a piston-cylinder device is compressed from 27°C and 100 kPa to 900 kPa by...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Air is compressed isentropically from 100 kPa and 27°C to 2550 kPa in a piston-cylinder device....

    Air is compressed isentropically from 100 kPa and 27°C to 2550 kPa in a piston-cylinder device. Determine its final temperature using exact analysis A. Close to 740 °C B. Close to 467 °C C. 483.81 °C D. 68.14 °C

  • A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air...

    A frictionless piston-cylinder device contains 0.2 kg of air at 100 kPa and 27°C. The air is now compressed slowly according to the relation P Vk = constant, where k = 1.4, until it reaches a final temperature of 77°C. Sketch the P-V diagram of the process with respect to the relevant constant temperature lines, and indicate the work done on this diagram. Using the basic definition of boundary work done determine the boundary work done during the process [-7.18...

  • Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125...

    Consider a piston-cylinder device (system) that contains 0.06 m3 of air at 300 kPa and 125 ̊C. (a) If the volume of air in the device increases to 0.15 m3 while the pressure remains constant, determine the work done by the system during the process. (b) If as a result of heat transfer to the surrounding, the pressure and temperature in the device drop to 240 kPa and 55 ̊C, respectively, and the piston is held such that the volume...

  • A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100...

    A piston cylinder device contains air with a volume of 0.05 m3 at 25oC and 100 kPa pressure. The gas is now compressed to a final temperature of 95oC at 250 kPa. This compression is polytropic and follows PVn=constant. a. Determine how much boundary work was added to the gas [in kJ] b. How much heat was added or removed from this system during this process? [in kJ]

  • a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa...

    a piston -cylinder device contains 2.5 Kg of carbon dioxide (CO2 ) initially at 100 KPa and 300o C. The carbon dioxide is then compressed to 200 kPa following a process of Pv1.25 =constant. Determine (A) the boundary worked needed for the process (B) The temperature after compression . use Ideal gas state and Pressure in absolute pressure ; R=0.1889 KJ/Kg-K

  • Nitrogen in a piston cylinder device occupies 0.5 m3 at 100 kPa and 20 °C. It undergoes a compres...

    Nitrogen in a piston cylinder device occupies 0.5 m3 at 100 kPa and 20 °C. It undergoes a compression process (during which PV1.30-constant) to a final state where the temperature is 200 °C. The specific heats are assumed to be constant while Tsur - 15 C a) Prove that the gas, at state 1, can be treated as an ideal gas. b) Find the pressure and volume at state 2 c) Find the heat transfer, in kJ. d) Find the...

  • A piston–cylinder device initially contains air at 150 kPa and 27 °C. In this state, the...

    A piston–cylinder device initially contains air at 150 kPa and 27 °C. In this state, the piston is resting on a pair of stops, and the enclosed volume is 400 litres. The mass of the piston is such that a 200 kPa pressure is required to move it. The air is now heated until its volume has doubled. Sketch the process on a P-V diagram and determine (a) the mass of air and the final temperature, (b) the work done...

  • Problem #4: Air is compressed in a piston cylinder from 1 bar, 17 °C such that...

    Problem #4: Air is compressed in a piston cylinder from 1 bar, 17 °C such that the "2-30% v1 Assume polytropic compression with n - 1.3, negligible kinetic and potential energy changes, and ideal gas behavior. Determine the following. (a) the temperature of the exiting air, in °C; (b) the work and heat transfer, in kJ/kg (c) the entropy generated, in kJ/kgK, if heat transfer takes place at 520 K; (d) Also sketch the process on p-v and T-s diagrams...

  • A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It...

    A piston-cylinder assembly initially contains 0.8 kg of air at 100 kPa and 300 K. It is then compressed in a polytropic process PV3 = C to half the original volume. Assuming the ideal gas model for air and specific heat ratio is constant, k=1.4, determine (a) the final temperature, (b) work and heat transfer, each in kJ. R= 0.287 kJ/kg K. W, 82

  • (10 pts) Air is compressed from 5.3 L, 7°C and 98 kPa to 0.65 L inside...

    (10 pts) Air is compressed from 5.3 L, 7°C and 98 kPa to 0.65 L inside a piston-cylinder device. The compression is reversible and adiabatic. Rair 0.287 k]/kg.K. Using variable specific heat analysis, determine: 1. a. b. c. The temperature after compression, in K. The pressure after compression, in kPa. The work done on the system, in k].

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT