Question

(7%) Problem 14: A thin cylindrical ring starts from rest at a height h,-83 m. The ring has a radius R -12 cm and a mass M-2 kg. R: 2 h, Otheexpertta.com assuming that the gravitational potential energy at point 3 is zero. /S 20% Part (b) If the ring rolls (without slipping) all the way to point 2, what is the rings energy at point 2 in terms of h2 and - 20% Part (a) write an expression for the rings initial energy at point l 2? 20% Part (c) Given h,-5 m, what is the velocity of the ring at point 2 in m/s? 20% Part (d) What is the rings rotational velocity in rad/s? 20% Part (e) After passing point 2 the hill becomes frictionless and the rings rotational velocity remains constant. What is the linear velocity of the ring at point 3 in m/s? Grade Summary Deductions 100% Potential 0% v3 =

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
(7%) Problem 14: A thin cylindrical ring starts from rest at a height h,-83 m. The...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A315-N thin cylindrical shell, or hoop, of radius 0.35 m is released from rest and rolls...

    A315-N thin cylindrical shell, or hoop, of radius 0.35 m is released from rest and rolls without slipping from the top to the bottom of a ramp of length 4.5 m that is inclined at an angle of 20 degrees with the horizontal as shown in the figure below a. What type(s) of energy does the object have when it is released? Gravitational Potential Energy (GPE) Rotational Kinetic Frey(KE. Translational Kinetic Energy (K) Both KE, and KE GPE, KE, and...

  • A thin ring of radius R and mass M rolls without slipping along a level track....

    A thin ring of radius R and mass M rolls without slipping along a level track. It has an initial linear, or translational velocity (of the center of gravity) of 3.50 m/s. The ring rolls to the end of the track, where the track curves upward. The center of gravity of the ring rises to a maximum height h above its initial level. Note that V is the symbol for the linear, or translational velocity (of the center of gravity)...

  • 3. A round item of mass M starts from rest at the top of a hil...

    3. A round item of mass M starts from rest at the top of a hil of height h. It rolls down the hill, gaining both translational and rotational kinetic energy. Choose either a solid sphere (I = 름MR2), a solid cylinder (1-AMR2), or a hoop (I =MR2) and calculate the translational velocity v of the object at the bottom of the hill in terms of M, g, h, and numerical constants.

  • A disk of m=5 kg and radius r=2 m starts from rest and rolls down a...

    A disk of m=5 kg and radius r=2 m starts from rest and rolls down a 20 degree incline from an initial height of 50 m. What is the linear velocity of the disk as it reaches the bottom of the incline? What is the rotational kinetic energy of the disk at the halfway point between the positions 1 and 2? If it takes 1.2 seconds for the disk to reach the bottom of the incline, find the magnitude of...

  • Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H l...

    Problem 9 m,r A solid ball of mass m and radius r sits at rest at the top of a hill of height H leading to a circular loop-the loop. The center of mass of the ball will move in a circle of radius R if it goes around the loop. The moment of inertia of a solid ball is Ibull--mr. (a) Find an expression for the minimum height H for which the ball barely goes around the loop, staying...

  • 4. A solid sphere of mass 2 ks and radius of 0.2 m starts from rest...

    4. A solid sphere of mass 2 ks and radius of 0.2 m starts from rest and rolls down a 3.00- high without slipping. What is the total energy of the sphere just before it starts rolling down? mazka 5. What is the velocity of the sphere just as it reaches the bottom of the incline? 6. What is the rotational kinetic energy of the sphere just as it reaches the bottom of the incline?

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest...

    A sphere of radius r =34.5 cm and mass m = 1.80 kg starts from rest and rolls without slipping down a 30.0∘ incline that is 10.0 m long. Calculate its translational speed when it reaches the bottom. Calculate its rotational speed when it reaches the bottom. What is the ratio of translational to rotational kinetic energy at the bottom?

  • A 305-N solid sphere of radius 0.4 m is released from rest and rolls without slipping...

    A 305-N solid sphere of radius 0.4 m is released from rest and rolls without slipping from the top to the bottom of a ramp of length 5 m that is inclined at an angle of 25 degrees with the horizontal as shown in the figure below. a. What type(s) of energy does the object have when it is released? Gravitational Potential Energy (GPE) Rotational Kinetic Energy (KE) Translational Kinetic Energy (KE) Both KE and KE, GPE, KE, and KE,...

  • An 8.80-cm-diameter, 340 g solid sphere is released from rest at the top of a 1.60-m-long,...

    An 8.80-cm-diameter, 340 g solid sphere is released from rest at the top of a 1.60-m-long, 20.0 ∘ incline. It rolls, without slipping, to the bottom. Part A What is the sphere's angular velocity at the bottom of the incline? Part B What fraction of its kinetic energy is rotational?

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT