Question

Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation and recombination, how thd) The same doping density as for Q3(c) above is used for the n-type doping of a pn diode, with a built-in voltage of preciseRelevant Fundamental Constants (to 3 significant figures) q = -e = -1.60x10-19C kg Electron charge: me = 9.10×1031 Electron

0 0
Add a comment Improve this question Transcribed image text
Answer #1

a) An empty state in the valence band is referred to as hole. If the conduction band electron and the hole are created by the excitation of a valence band electron to the conduction band, they are called an electron-hole pair and the process is called electron-hole pair generation. Similarly, when an electron from the conduction band jumps back to the valence band and combine with a hole, the process is called electron-hole recombination. The equilibrium number of electron-hole pairs in pure Si at room temperature is about 1010 EHP/cm³, compared to the Si atom density of more than 1022 atoms/cm³. Thus the few electrons in the conduction band are free to move about via the many available empty states. This contributes to the increased conductivity. Intrinsic carrier density refers to the number of electrons (or holes) in the conduction (or valence) band in the case of zero doping.

b) Ee Condu etion Ef = E; Ej Valene Ev Ev Int mi nsie si n- ty pe Two types of suitabl dopant atoms are Phosp hoaus and Arsen

Add a comment
Know the answer?
Add Answer to:
Taking pure silicon (Si) as an example, explain what is meant by the terms electron-hole generation...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • QUESTION 43 (10 Marks) a) Calculate the conductivity of an intrinsic silicon (SI) semiconductor at 27°C...

    QUESTION 43 (10 Marks) a) Calculate the conductivity of an intrinsic silicon (SI) semiconductor at 27°C if the hole mobility is 460 cm V's and the electron mobility is 1350 cm? Vis! Assume an intrinsic carrier density of 1.45 x 10 carriers/cm' and an electron charge of -0.16 x 10-4C (3 marks) b) Using Figure 8, calculate the conductivity of the Si intrinsic semiconductor if the temperature is increased to 150°C, assuming the same electron and hole mobilities (2 marks)...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

  • Could i please have assistance in working out and theory for this question. Could i please...

    Could i please have assistance in working out and theory for this question. Could i please get further explanation on how values are achieved with B and C Please a) Calculate the conductivity of an intrinsic Si conductor at 27 °C if the hole mobility is 450 cm2 V1s-1 and the electron mobility is 1350 cm2 V's1. Assume an intrinsic carrier density of 1.45 x 1010 carriers/cm3 and an electron charge of -0.16 x 10-18 C. b) Using Figure 5,...

  • Could i please have assistance in working out and theory for this question. a) Calculate the...

    Could i please have assistance in working out and theory for this question. a) Calculate the conductivity of an intrinsic Si conductor at 27 °C if the hole mobility is 450 cm2 V1s-1 and the electron mobility is 1350 cm2 V's1. Assume an intrinsic carrier density of 1.45 x 1010 carriers/cm3 and an electron charge of -0.16 x 10-18 C. b) Using Figure 5, calculate the conductivity of the Si intrinsic conductor if the temperature is increased to 127 °C...

  • Problem 4: Narrow-Base Diode Consider an ideal pn* step-junction Si diode maintained at 300K with cross-sectional...

    Problem 4: Narrow-Base Diode Consider an ideal pn* step-junction Si diode maintained at 300K with cross-sectional area A = 104cm2. The doping concentration on the p-type side is Na= 1017 cm3 (uncompensated). (The n-type side is degenerately doped.) The electron recombination lifetime in the p-type region is tn = 10-6 s. The width of the quasi-neutral p-type region is 1 um, for VA=0 V. a Is this a narrow-base diode? Justify your answer. b) Calculate the diode saturation current Io....

  • A silicon semiconductor material is doped with 3x1015/cm of phosphorous atoms at room temperature (300°K). Given:...

    A silicon semiconductor material is doped with 3x1015/cm of phosphorous atoms at room temperature (300°K). Given: Electron mobility is 1450 cm2/V-s, Hole mobility is 380 cm?/V-s, Intrinsic carrier concentration (n) of Si at room temperature (300°K) 1.5x 101%cm³. Calculate the conductivity of the material

  • Could i please have assistance in working out and theory for this question. a) Calculate the...

    Could i please have assistance in working out and theory for this question. a) Calculate the conductivity of an intrinsic Si conductor at 27 °C if the hole mobility is 450 cm2 V1s-1 and the electron mobility is 1350 cm2 V's1. Assume an intrinsic carrier density of 1.45 x 1010 carriers/cm3 and an electron charge of -0.16 x 10-18 C. b) Using Figure 5, calculate the conductivity of the Si intrinsic conductor if the temperature is increased to 127 °C...

  • 3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...

    3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" +...

  • An important application of PN diodes is their use as photodetectors. The optical radiation creates electron-hole...

    An important application of PN diodes is their use as photodetectors. The optical radiation creates electron-hole pairs in the depletion region and regions within the diffusion lengths near the depletion edges. These e-h pairs are collected as a photocurrent. The e-h pairs are generated at the rate GL 1022 cm-3s1. Calculate the photocurrent. Consider a silicon PN diode at 300K with following parameters Equation for photocurrent calculation: AGL (W Ln Lp) A 104 um2 Na = 2 x 1016 cm-3...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT