Question

4. A mass of 5 kg undergoes a process during which there is heat transfer from...

4. A mass of 5 kg undergoes a process during which there is heat transfer from the mass at a rate of 6 kJ per kg, an elevation decrease of 34 m, and an increase in velocity from 13 m/s to 34 m/s. The specific internal energy decreases by 6 kJ/kg and the acceleration of gravity is constant at 9.7 m/s2. Determine the work for the process, in kJ.

5. A gas is compressed in a piston–cylinder assembly from p1 = 2 bar to p2 = 7.2 bar, V2 = 0.04 m3 in a process during which the relation between pressure and volume is pV1.2 = constant . The mass of the gas is 0.5 kg. If the specific internal energy of the gas increases by 54 kJ/kg during the process, determine the heat transfer, in kJ. Kinetic and potential energy changes are negligible.

3. Nitrogen (N2) gas within a piston–cylinder assembly undergoes a compression from p1 = 0.1 MPa, V1 = 2.43 m3 to a state where p2 = 3 MPa. The relationship between pressure and volume during the process is pV1.32 = constant. For the N2, determine the work, in kJ.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

As per Chegg Guideline i can only answer one question from the above list anf that is as per below.

Here m=5kg

Heat Transfer

V1= 13 m/s

V2= 34 m/s

Here change in potential energy is

Change in Kinetic Energy

Now as per the First law of thermodynamics

Here negative sign shows that work is done on the system.

Add a comment
Know the answer?
Add Answer to:
4. A mass of 5 kg undergoes a process during which there is heat transfer from...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure...

    1.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 277°C from a pressure of 5.1 bar to a pressure of 2.7 bar. Evaluate the work, in kJ/kg. 2.Nitrogen (N2) contained in a piston–cylinder arrangement, initially at 9.3 bar and 437 K, undergoes an expansion to a final temperature of 300 K, during which the pressure–volume relationship is pV1.1 = constant. Assuming the ideal gas model for the N2, determine the heat transfer in kJ/kg. 3.Argon contained in...

  • A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is...

    A gas undergoes a process in a piston–cylinder assembly during which the pressure-specific volume relation is pv1.1 = constant. The mass of the gas is 0.4 lb and the following data are known: p1 = 160 lbf/in.2, V1 = 1 ft3, and p2 = 390 lbf/in.2 During the process, heat transfer from the gas is 2.1 Btu. Kinetic and potential energy effects are negligible. Determine the change in specific internal energy of the gas, in Btu/lb.

  • Problem 2 (25 points) gas expands in a piston-cylinder assembly from p1 8 bar, V 0.02...

    Problem 2 (25 points) gas expands in a piston-cylinder assembly from p1 8 bar, V 0.02 m to p2-2 bar. The relation between pressure and volume during the gas expansion process is p constant. The mass of the gas is 0.25 kg. If the specific internal energy of the gas decreases by 40 kJ/kg during the process, determine the heat transfer, in kJ Kinetic and potential energy effects are negligible.

  • 1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of...

    1.Argon contained in a closed, rigid tank, initially at 62.3°C, 3.9 bar, and a volume of 4.2 m3, is heated to a final pressure of 9.4 bar. Assuming the ideal gas model with k = 1.6 for the argon, determine the heat transfer, in kJ. 2.Water vapor contained in a piston–cylinder assembly undergoes an isothermal expansion at 223°C from a pressure of 5.4 bar to a pressure of 1.9 bar. Evaluate the work, in kJ/kg. 3.A mass of 4 kilograms...

  • Considering that 0.1 kg of gas contained within a piston-cylinder assembly undergoes a polytropic expansion process...

    Considering that 0.1 kg of gas contained within a piston-cylinder assembly undergoes a polytropic expansion process with polytropic exponent n=2. The initial state has specific internal energy 10 J/kg, pressure 100 Pa, specific volume 2 m3/kg, and the final state has specific internal energy 5 J/kg and pressure 50 Pa. 1. Sketch the process on a P − V diagram 2. Determine the total heat transfer into or out of the gas during the process.

  • Thermodynamics: Work & Heat Transfer in Piston-Cylinder

    for part a) got W = 4kJ, dQ = 4.25 kJfor part b) got w = 2kJ...How do you find ΔPE without mass? Do you use the conservation of energy equation?As shown in Fig. P2.56, a gas contained within a piston–cylinder assembly, initially at a volume of 0.1 m3, undergoesa constant-pressure expansion at 2 bar to a final volume of0.12 m3, while being slowly heated through the base. Thechange in internal energy of the gas is 0.25 kJ. The pistonand...

  • finding work and heat transfer given a piston-cylinder assembly

    As shown in Fig. P2.56, a gas contained within a piston–cylinder assembly, initially at a volume of 0.1 m3, undergoesa constant-pressure expansion at 2 bar to a final volume of0.12 m3, while being slowly heated through the base. Thechange in internal energy of the gas is 0.25 kJ. The pistonand cylinder walls are fabricated from heat-resistant material,and the piston moves smoothly in the cylinder. The localatmospheric pressure is 1 bar.(a) For the gas as the system, evaluate work and heat...

  • Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality...

    Propane is compressed from an initial state with a pressure of 100 lbf/in2 and a quality of 0.40 to a final saturated liquid state with a temperature is 50°F. Is it possible for this process to occur adiabatically? Justify your answer. Air is contained in a rigid, well-insulated container of volume 3 m3. The air undergoes a process from an initial state with a pressure of 200 kPa and temperature of 300 K. During the process, the air receives 720...

  • A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2:...

    A gas within a piston-cylinder assembly undergoes a thermodynamic cycle consisting of three processes: Process 1-2: Constant volume V1 = 2 m3, p1 = 1 bar, to p2 = 3 bar, U2 – U1 = 400 kJ. Process 2-3: Constant pressure compression to V3 = 1 m3. Process 3-1: Adiabatic expansion, with W31 = 150 kJ. There are no significant changes in kinetic or potential energy. Determine the net work for the cycle, in kJ, and the heat transfers for...

  • please help me with this problem! 4) A gas contained within a piston-cylinder assembly undergoes four...

    please help me with this problem! 4) A gas contained within a piston-cylinder assembly undergoes four processes in series: Process 1-2. Expansion with Pr= constant, P,-3 bar, p, = 0.2 m, P2-2 bar, U-U-200 kJ. Process 2-3: Constant volume cooling of the gas to 1 bar, with Us 100 kJ. Process 4-1: Expansion with PV constant. a) Evaluate V2 and V4, each in m3 b) Sketch the processes in series on a P-V diagram labeled with pressures and volumes at...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT