Question

a. Two 700-kg masses (1543 lb) are separated by a distance of 33 m. Using Newton’s...

a. Two 700-kg masses (1543 lb) are separated by a distance of 33 m. Using Newton’s law of gravitation, find the magnitude of the gravitational force exerted by one mass on the other. (Use G = 6.67 × 10-11 N·m2/kg2.) (Round the final answer to four decimal places.)

The magnitude of the gravitational force exerted by one mass on the other is ___________ × 10–9 N.

b. Two masses are attracted by a gravitational force of 0.36 N. What will the force of attraction be if the distance between the two masses is halved? (Round the final answer to four decimal places.)

The force of attraction will be _______ N.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Please let me know if it was helpful. Thank you!

Add a comment
Know the answer?
Add Answer to:
a. Two 700-kg masses (1543 lb) are separated by a distance of 33 m. Using Newton’s...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Two 700-kg masses (1543 lb) are separated by a distance of 45 m. Using Newton’s law...

    Two 700-kg masses (1543 lb) are separated by a distance of 45 m. Using Newton’s law of gravitation, find the magnitude of the gravitational force exerted by one mass on the other. (Use G = 6.67 × 10-11 N·m2/kg2.) (Round the final answer to four decimal places.) The magnitude of the gravitational force exerted by one mass on the other is _____× 10–9 N.

  • Objects with masses of 222 kg and 212 kg are separated by 0.375 m. A 69.8...

    Objects with masses of 222 kg and 212 kg are separated by 0.375 m. A 69.8 kg mass is placed midway between them 212 kg 222 kg 69.8 kg 0.375 m Find the magnitude of the net gravitational force exerted by the two larger masses on the 69.8 kg mass. The value of the universal gravi- tational constant is 6.672 × 10-11 N·m2/kg2 Answer in units of N 014 (part 2 of 2) 10.0 points Leaving the distance between the...

  • Two 639-kg masses are separated by a distance of 0.15 m.  Using Newton's Law of Universal Gravitation,...

    Two 639-kg masses are separated by a distance of 0.15 m.  Using Newton's Law of Universal Gravitation, find the gravitational force of attraction between these two masses.

  • Part A: Objects with masses of 81 kg and 634 kg are separated by 0.362 m....

    Part A: Objects with masses of 81 kg and 634 kg are separated by 0.362 m. A 72.9 kg mass is placed midway between them.Find the magnitude of the net gravitational force exerted by the two larger masses on the 72.9 kg mass. The value of the universal gravitational constant is 6.672 × 10−11 N · m2 /kg2 . Answer in units of N. Part B: Leaving the distance between the 81 kg and the 634 kg masses fixed, at...

  • A car with a mass of 1200 kg is moving around a curve with a radius...

    A car with a mass of 1200 kg is moving around a curve with a radius of m constant speed of 10 m/s Calculate the centripetal acceleration the the two decimal the final answer Determine the magnitude of the force required to produce this centripetal acceleration. Round to nearest whole number 2. A 0.23 kg ball moving in a circle at the end of a string has a centripetal acceleration of 10 m/s. Determine the magnitude of the centripetal force...

  • Review Three identical very dense masses of 5700 kg each are placed on the x axis....

    Review Three identical very dense masses of 5700 kg each are placed on the x axis. One mass is at 150 cm, one is at the origin, and one is at 2 380 cm Part A What is the magnitude of the net gravitational force Faray on the mass at the origin due to the other two masses? Take the gravitational constant to be G 6.67x10-1 N m2/kg2 . Express your answer in newtons to three significant figures View Available...

  • Three identical very dense masses of 6000 kg each are placed on the x axis. One...

    Three identical very dense masses of 6000 kg each are placed on the x axis. One mass is at x1 = -120 cm , one is at the origin, and one is at x2 = 450 cm . Q: What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 . Q: What is the direction of the net...

  • Three identical very dense masses of 6900 kg each are placed on the x axis. One...

    Three identical very dense masses of 6900 kg each are placed on the x axis. One mass is at x1 = -150 cm , one is at the origin, and one is at x2 = 350 cm . What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 Fgrav = ? N

  • Three identical very dense masses of 5100 kg each are placed on the x axis. One...

    Three identical very dense masses of 5100 kg each are placed on the x axis. One mass is at x1 = -110 cm , one is at the origin, and one is at x2 = 350 cm . What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2 / kg2 .

  • Three identical very dense masses of 7000 kg each are placed on the x axis. One...

    Three identical very dense masses of 7000 kg each are placed on the x axis. One mass is at x1 = -130 cm , one is at the origin, and one is at x2 = 350 cm . What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m2/kg2 .

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT