Question

The temperature of an oven is kept constant at 950.0 K. A hole with a diameter...

The temperature of an oven is kept constant at 950.0 K. A hole with a diameter of 24.0 mm is drilled in the wall of the oven. How much power is emitted by this hole? Hint: consider the hole as a black body.

_____???

What is the wavelength for which the radiant energy is maximum?

_____???

Help me please!!!!! Thanks!

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
The temperature of an oven is kept constant at 950.0 K. A hole with a diameter...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • The temperature of an oven is kept constant at 1050 K. A hole with a diameter...

    The temperature of an oven is kept constant at 1050 K. A hole with a diameter of 21.0 mm is drilled in the wall of the oven. How much power is emitted by this hole? (Consider the hole as a black body.) What is the wavelength for which the radiant energy is maximum?

  • Step 2 What is the total power received by the detector from a small, deep hole...

    Step 2 What is the total power received by the detector from a small, deep hole drilled in the block, in W? Step 3 What is the reflectivity of the block surface? Step 4 What is the radiosity of the surface, in W/m2? Step 5 What is the total power received by the detector from the small area on the block surface, in W? A small anodized aluminum block at 45°C is heated in a large oven whose walls are...

  • 3. A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has...

    3. A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has a diameter D= 50 mm and length L= 1 m. During the process, the oven wall temperature is fixed at Tsur=800 K, and the hot air is blowing with a temperature T.= 500 K and an average heat transfer coefficient h=50 W/m²K. Assuming the filament surface is opaque and diffuse, and it has a spectral emissivity as shown below: (25 pts) The oven walls behave...

  • Problem 4. Radiation from the black hole accretion disk.] In this problem you will find the...

    Problem 4. Radiation from the black hole accretion disk.] In this problem you will find the temperature of an accretion disk surrounding the black hole, and the wavelength of maximal radiation from the disk. Note that the calculation is super-simplified - if you take more advanced astronomy courses, you will do the same calculation more carefully. In this problem 'BH' means black hole. We will consider the BH of mass equal to twenty solar masses MBH = 20 MSun. (a)...

  • How much power (power is the energy per second) is radiated by the person

    Radiation of Energy The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation: = aeAT4 where o 5.67x10-8 J/s - m2 K is the Stefan-Boltzmann constant, A is the surface area of the object, and T is its absolute temperature in kelvin. The symbol e stands for the emissivity of the object, which is a measure of how well it radiates An ideal jet-black (or black body) radiator has e 1,whereas a perfect reflector has...

  • 3. A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has...

    A small cylindrical filament is heated in a large combination convection-radiation oven. The filament has a diameter \(\mathrm{D}=50 \mathrm{~mm}\) and length \(\mathrm{L}=1 \mathrm{~m}\). During the process, the oven wall temperature is fixed at \(\mathrm{T}_{\text {sur }}=800 \mathrm{~K}\), and the hot air is blowing with a temperature \(\mathrm{T}_{\infty}=500 \mathrm{~K}\) and an average heat transfer coefficient \(\bar{h}=50 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{K}\).Assuming the filament surface is opaque and diffuse, and it has a spectral emissivity as shown below: (25 pts)The oven walls...

  • The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation...

    The rate of heat transfer by emitted radiation is determined by the Stefan-Boltzmann law of radiation = ceAT4 t where a 5.67x108 J/(s m2. K4) is the Stefan-Boltzmann constant, A is the surface area of the object, and T is its absolute temperature in kelvin. The symbol e stands for the emissivity of the object, which is a measure of how well it radiates. An ideal jet-black (or black body) radiator has e 1, whereas a perfect reflector has e...

  • Now we consider a black hole of the same mass as the Sun: Mbh 2 x 1050 k (a) (2 marks) Show that if you are launching a...

    Now we consider a black hole of the same mass as the Sun: Mbh 2 x 1050 k (a) (2 marks) Show that if you are launching a rocket with velocity v upwards from a planet of mass M, you can only escape the planet's gravity if you start from a radius r > 2GM/v2 Hint: Use Newtonian mechanics What if your rocket is acutally a beam of light? If we forget about relativity for a minute, we can put...

  • A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C.

    A rod of diameter D = 25 mm and thermal conductivity of 60 W/m K protrudes from a furnace with a wall temperature of 200°C. The rod is welded to the furnace wall and is used as a hangar for instrumentation cables. To avoid damaging the cables, the surface temperature of last 100 mm of the rod must be kept below 100°C. The ambient air temperature is 25°C and the convection coefficient is 15 W/m2K. (a) Write the finite-difference equation for...

  • calculate the current that has to go through a metallic filament whose diameter is .1 mm...

    calculate the current that has to go through a metallic filament whose diameter is .1 mm that is in a vacuum bulb so that its temperature is 2500 k consider that the filament emits as a black body despises the energy losses by conduction the resistivity Filament is 2.5 * 10 ^ -4

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT