Question

Gas phase reaction, A > 3B (volume-increasing reaction), K=0.3, CA0=3mol/L, and V0=2L/min. Onl...

Gas phase reaction, A > 3B (volume-increasing reaction), K=0.3, CA0=3mol/L, and V0=2L/min. Only A is involved in the initial phase.
1. What volume do you need for secondary response, CSTR reactor, and conversion rate of 80% ?
2. What volume do you need for first response, PFTR reactor, and conversion rate of 80% ?
0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Gas phase reaction, A > 3B (volume-increasing reaction), K=0.3, CA0=3mol/L, and V0=2L/min. Onl...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • R1 - LIQUID PHASE CHEMICAL REACTOR The elementary liquid phase reaction given below is carried out...

    R1 - LIQUID PHASE CHEMICAL REACTOR The elementary liquid phase reaction given below is carried out in a CSTR by isothermal operation. k > NaOAC + EtOH k = 3.59 L/mol.min NaOH + EtOAC (A) (B) (C) (D) The volume of the CSTR is 2 L and the flowrates of the feeds in the individual streams are 50 ml/min for both reactants. The concentrations of NaOH and EtoAc are 0.05 mol/L and 0.1 mol/L, respectively. [6] a) Calculate the conversion...

  • The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic...

    The elementary gas phase reaction (A <--> 2B) is to be carried out in an adiabatic CSTR. The feed which is at a temperature of 27oC, consists of 80% of A and the remainder inerts. The volumetric flow rate entering the reactor at this temperature is 100 l/min. The concentration of A in the feed at 27oC is 0.5 mol/liter. For 80% of the adiabatic equilibrium conversion, calculate the required reactor volume. DATA: CpA=12 J/mol.K; CpB=10 J/mol.K; CpI=15 J/mol.K deltaHrxn=-75000...

  • Question 11: Gas phase reactions in a Batch Reactor A gas phase reaction, shown below, is...

    Question 11: Gas phase reactions in a Batch Reactor A gas phase reaction, shown below, is to be performed isothermally in a batch reactor of constant volume. The reactor is filled with 20 moles of pure A and its volume is 20 litres (a) If the temperature is 127 C, what is the initial total pressure? (b) What would be the final pressure assuming the reaction goes to completion? (c) If the reaction is first order, with a rate constant...

  • QUESTION 5: 10 marks An elementary aqueous phase reaction A --> B+C is to be carried...

    QUESTION 5: 10 marks An elementary aqueous phase reaction A --> B+C is to be carried out in 10 points a non-ideal CSTR which has both bypassing and a dead zone in it. The measured liquid volume in the reactor is 500 dm3 and the volumetric flow rate to the reactor is 10 dm3/min with a concentration of A as Imol/dm3. The reaction rate constant is 0.5 min^-1. a) Calculate the conversion that can be expected in this reactor if...

  • The elementary, reversible gas phase reaction A B is to be carried out in a CSTR with heat exchange. Pure A is fed to t...

    The elementary, reversible gas phase reaction A B is to be carried out in a CSTR with heat exchange. Pure A is fed to the reactor. The heat exchange coil in the reactor is maintained at 400K. The rate coefficient is known at 400K, but heat of reaction is unknown. Data: k1(400K) = 0.001 s.! V-1000L To=350K R-831 J/mol K h 5 mol's UA 1000 J/K Kea (450K-1 A) Calculate the conversion (X) if the steady state CSTR is operated...

  • Question 1: Design of isothermal reactors 30 Marks The irreversible, gas-phase reaction A+B D is to be carried out...

    Question 1: Design of isothermal reactors 30 Marks The irreversible, gas-phase reaction A+B D is to be carried out in an isotherma °C) plug-flow reactor (PFR) at 5.0 atm. The mole fractions of the feed streams are A 0 B 0.50, and inerts 0.30. The activation energy for the above reaction is 80 000 cal/mol. the pressure drop due to fluid friction in the reactor is so small that it can be ignored, perform the following tasks: 2T a s...

  • advanced CRE subject step by step solution QUESTION 5: 10 marks An elementary aqueous phase reaction...

    advanced CRE subject step by step solution QUESTION 5: 10 marks An elementary aqueous phase reaction A --> B+C is to be carried out in 10 point a non-ideal CSTR which has both bypassing and a dead zone in it. The measured liquid volume in the reactor is 500 dm3 and the volumetric flow rate to the reactor is 10 dm3/min with a concentration of A as Imol/dm3. The reaction rate constant is 0.5 min-1. a) Calculate the conversion that...

  • The reaction A ------> B (1) with rate constant, k1= 0.5 min-1 at 400 K is...

    The reaction A ------> B (1) with rate constant, k1= 0.5 min-1 at 400 K is to be carried out in an isothermal PFR. However, a second reaction A ----> C (2) with rate constant, k2= 0.1 min-1at 400 K occurs concurrently with reaction (1). The concentration of Ain the feed is CA0= 2 mol dm-3 and the volumetric flow rate of the feed is v0= 4 dm3min-1. (a) Determine the mean residence time, t and the reactor volume, V...

  • Question # 3 (10 points) The isothermal, isobaric elementary gas phase reaction A+B -+ 2C is...

    Question # 3 (10 points) The isothermal, isobaric elementary gas phase reaction A+B -+ 2C is performed in a Plug Flow Reactor. The feed contains A-20% and B=80%. The total feed flows at 100 mol/min and 5 m/min. The rate constant, k-0.16m/(mol. min). Calculate the volume of the reactor at 70% conversion of component A for the following cases: a- Case 1: Assume B is an excess reactant b- Case 2: B is NOT an excess reactant C- Compare the...

  • The reversible gas-phase dehydrogenation of ethylbenzene is achieved in an isothermal CSTR with no pressure drop....

    The reversible gas-phase dehydrogenation of ethylbenzene is achieved in an isothermal CSTR with no pressure drop. The feed enters at a volumetric flow rate of v0 = 2000 L/hour. On a molar basis the feed consists of half ethyl benzene (A) and half inerts (I) and is well mixed before it enters the reactor. The total pressure in the reactor is 6 bar (PA0 = 3 bar, PI0 = 3 bar). The molar flow rate of A is FA0 =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT