Question

True or False Question. Please provide a full explanation.

(m) Suppose we have mass of weight 1kg hanging off a spring with spring constant k = 10 and a damping constant B = 2. This ma

0 0
Add a comment Improve this question Transcribed image text
Answer #1

considering the differential equation is

m u'' + v u ' + k u = F( t )

for free vibration F ( t ) = 0

and it is un damped equation so r = 0

then

m u'' + v u ' = 0

m r2 + k = 0

r = \pm i ( k/m )1/2

m u '' + \gamma r + k = 0

m r2 + \gamma r + k = 0

r = - \gamma\pm ( \gamma2 - 4 m k )1/2 / 2 m

\gamma2 - 4 m k = 0

if

\gamma2 - 4 m k > 0

y '' + 9 y = 0

r2 + 9 = 0

r = \pm 3 i

so the behavior is is TRUE

now the given equation

y '' + 2 y ' + 10 y = 0

r2 + 2 r + 10 = 0

r = ( - 2 \pm 6 i ) / 2

\gamma2 - 4 m k

= 22 - 4 x 1 x 10

= - 36 < 0

iti says TRUE.

Add a comment
Know the answer?
Add Answer to:
True or False Question. Please provide a full explanation. (m) Suppose we have mass of weight...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant...

    Consider a mass-spring-dashpot system in which the mass is m = 4 lb-sec^2/ft, the damping constant is c =24 lb-sec/ft, and the spring constant is k=52lb/ft. The motion is free damped motion and the mass is set in motion with initial position x0=5ft and the initial velocity v0= -7ft/sec. Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped.

  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

  • A spring-mass-dashpot system for the motion of a block of mass m kg is shown in...

    A spring-mass-dashpot system for the motion of a block of mass m kg is shown in Fig. II-2. The block is moved to the right of the equilibrium position and is released from rest (time t = 0) when its displacement, x = XO. Using the notations given in Fig. II-2,4 (1) Draw the free body diagram of the block - (2) Write the equation of motion of the block- If the initial displacement of the block to the right...

  • 5. A 2 kg mass is attached to a spring whose constant is 30 N/m, and the entire system is submerg...

    5. A 2 kg mass is attached to a spring whose constant is 30 N/m, and the entire system is submerged in a liquid that imparts a damping force equal to 12 times the instaataneous velocity (a) Write the second-order linear differential equation to umodel the motion (b) Convert the second-order linear differential equation from part (a) to a first-order linear system (c) Classify the critical (equilibrium) point (0.0) (d) Sketch the phase portrait (e) Indicate the initial condition x(0)-(...

  • Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described...

    Solve it with matlab 25.16 The motion of a damped spring-mass system (Fig. P25.16) is described by the following ordinary differential equation: d’x dx ++ kx = 0 m dr dt where x = displacement from equilibrium position (m), t = time (s), m 20-kg mass, and c = the damping coefficient (N · s/m). The damping coefficient c takes on three values of 5 (under- damped), 40 (critically damped), and 200 (overdamped). The spring constant k = 20 N/m....

  • 4. (20 points) A mass pring system has a mass of kg, a damping constant of...

    4. (20 points) A mass pring system has a mass of kg, a damping constant of kg/sec and a spring constant of 15 kg/sec2. There is no external force. The system is started in motion at y 4 meters with an initial velocity of 3 m/s in the downward direction. a) Find the differential equation and the initial conditions that describe the motion of this system. b) Solve the resulting initial value problem. c) Is the spring system overdamped, underdamped...

  • (d) A 4-kg mass is suspended from a spring with a constant k 25, and a dashpot with various level...

    (d) A 4-kg mass is suspended from a spring with a constant k 25, and a dashpot with various levels of damping viscosity is present. The mass is displaced 0.5 m from its equilibrium and released. Determine the displacement y(t) of the mass if (i) c-15 i) c20, (iii) c-25, and (iv) c 30 In each case, state whether the system is overdamped, critically damped, or underdamped, and sketch the solution curve. (d) A 4-kg mass is suspended from a...

  • 6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is...

    6. A mass of 2 kilogram is attached to a spring whose constant is 4 N/m, and the entire system is then submerged in a liquid that inparts a damping force equal to 4 tines the instantansous velocity. At t = 0 the mass is released from the equilibrium position with no initial velocity. An external force t)4t-3) is applied. (a) Write (t), the external force, as a piecewise function and sketch its graph b) Write the initial-value problem (c)Solve...

  • 5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 feet. The entire system...

    5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 feet. The entire system is placed in a medium that offers a damping force numerically equivalent to twice the instantaneous velocity. The mass is initially released from a point 1/2 foot above the equilibrium point with a downward velocity of 5 ft/sec. (a) (6 points) Write the differential equation for the mass/spring system and identify the initial conditions. 7 5. (b) (12 points) Solve the IVP in part...

  • 5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 fort. The entire system...

    5. (20 points) A mass weighing 8 pounds stretches a spring 1.6 fort. The entire system is placed in a medium that offers a damping force numerically equivalent to twice the instantaneous velocity. The mass is initially released from a point 1/2 foot above the equilibrium point with a downward velocity of 5 sec (a) (6 points) Write the differential equation for the mass spring system and identify the initial conditions 7 5. (b) (12 points) Solve the IVP in...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT