Problem

The elementary irreversible gas phase catalytic reactionis to be carried out in a moving-b...

The elementary irreversible gas phase catalytic reaction

is to be carried out in a moving-bed reactor at constant temperature. The reactor contains 5 kg of catalyst. The feed is stoichiometric in A and B. The entering concentration of A is 0.2 mol/dm3. The catalyst decay law is zero order with kD = 0.2 s-1 and k = 1.0 dm6/(mol • kg • cat • s) and the volumetric flow rate is v0 = 1 dm3/s.

(a) What conversion will be achieved for a catalyst feed rate of 0.5 kg/s?


(b) Sketch the catalyst activity as a fıınction of catalyst weight (i.e., distance) down the reactor length for a catalyst feed rate of 0.5 kg/s.

(c) What is the maximum conversion that could be achieved (i.e., at infinite catalyst loading rate)?


(d) What catalyst loading rate is necessary to achieve 40% conversion?


(e) At what catalyst loading rate (kg/s) will the catalyst activity be exactly zero at the exit of the reactor?


(f) What does an activity of zero mean? Can catalyst activity be less than zero?


(g) How would your answer in part (a) change if the catalyst and reactant were fed at opposite ends? Compare with part (a).

(h) Now consider the reaction to be zero order with k = 0.2 mol/kg cat • min.

• The product sells for $160 per gram mole.

• The cost of operating the bed is $10 per kilogram of catalyst exiting the bed.

What is the feed rate of solids (kg/min) that will give the maximum profit? (Note: For the purpose of this calculation, ignore all other costs, such as the cost of the reactant, etc.)

Step-by-Step Solution

Request Professional Solution

Request Solution!

We need at least 10 more requests to produce the solution.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the solution will be notified once they are available.
Add your Solution
Textbook Solutions and Answers Search
Solutions For Problems in Chapter 10