Question

Design of Shell and tube heat exchanger

Screenshot_20200730_170011.jpg

Process Heat Transfer Complex Engineering Problem Due date of submission is August 10, 2020 (Monday 5 pm) Complex Engineering Problem has 25% weightage of sessional marks Problem statement: Design a heat exchanger for the marine application and specifications are listed below SAES Sea ale Inlet lemmperaturE, uet len perature, F 133 A shell-amd-tube heat exchanger type with geometrical parameters can be selected. The heat exchanger must be designed and rated. Different configurations of shell-and-tube ypes can be tested. A parametrical study is expected o develop with a suitable final design of shell and tube heat exehanger. Follow the strategy for the design of heat exehanger as mentioned below.

1 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 9 more requests to produce the answer.

1 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
Design of Shell and tube heat exchanger
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • (LMTD method) A 2 shell, 4 tube pass heat exchanger is beingused to heat 40...

    (LMTD method) A 2 shell, 4 tube pass heat exchanger is being used to heat 40 kg/s of a process fluid in the tubes from an inlet temperature of 15°C to a target temperature of 70°C using condensing steam at 150°C. The overall heat transfer coefficient for a clean heat exchanger was Uo=1500W/m2.°C, however, the design engineer neglected to take into account fouling of the heat exchanger. After 5 years of use, fouling has occurred with fouling factors of 0.0005m2.°C/W...

  • Question 5 - LMTD Heat Exchangers A 2 shell, 4 tube pass heat exchanger is being...

    Question 5 - LMTD Heat Exchangers A 2 shell, 4 tube pass heat exchanger is being used to heat 50 kg/s of a process fluid in the tubes from an inlet temperature of 25°C to a target temperature of 80°C using condensing steam at 150°C. The overall heat transfer coefficient for a clean heat exchanger was U-1500W/m2.°C, however, the design engineer neglected to take into account fouling of the heat exchanger. After 5 years of use, fouling has occurred with...

  • (40 pts) Shell-and-Tube Heat Exchanger to make Jell-O Cups A counter-current shell-and-tube heat exchanger is used...

    (40 pts) Shell-and-Tube Heat Exchanger to make Jell-O Cups A counter-current shell-and-tube heat exchanger is used to heat Jell-O solution (water + gelatin) using saturated steam on the shell side. Jell-O solution must be heated to at least 80 oC, poured into individual plastic cups, and then cooled to make the solid Jell-O cups. The Jell-O solution is heated with steam that enters the shell at 2.0 bar (Tsteam = 120oC) and exits as a saturated liquid. At this temperature...

  • (30 points in total) A shell-and-tube heat exchanger consists of a shell of inside diameter, D, a...

    (30 points in total) A shell-and-tube heat exchanger consists of a shell of inside diameter, D, and length I the shell outside the tubes. within the exchanger is $2,000, and the cost of the shell is given by f tubes. One fluid flows through the tubes and the other in ned I is a number o The initial cost of the heat exchanger tubing that will be contai G-si ,800+D2.5L Because of the fouling, the exchanger is required t an...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

  • A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to...

    A shell-and-tube heat exchanger similar to the one shown in the Figure below is used to recover energy from waste water at 40°C to heat fresh water entering at 18°C. The mass flow rate of the waste water is 4 kg/s which is the same as that of the fresh water. Using the data given, calculate: (i) the optimum rate of energy recovery; the required heat transfer area; (iii) the temperature of the fresh water at exit. Shell fluid inlet...

  • Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and...

    Oil of unknown properties is heated in a shell-and-tube heat exchanger with one shell pass and 20 tube passes. The oil flows through the shell, and hot water flows inside the single copper tube that has an inner diameter of 20 mm, a wall thickness of 2 mm, and a length of 3 m per pass. The water enters at 360 K at a mass flow rate of 0.2 kg/s and leaves at 300 K. The inlet and outlet temperatures...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • 1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold strea...

    1 CPD4701 Assignment 2/2019 Question 2 shell and-tube heat exchanger was designed for the following service: Cold stream Hot stream Crude Oil Fluid Cooling water Tube side Stream allocation Shell side Mass flow rate (kg/s) 110 30 Inlet temperature (C) 90 Outlet temperature (C) Heat capacity (J/kg K) Density (kg/m2) Viscosity (Pa-s) Thermal conductivity (W/m-K) Fouling factor (m2 CW) 40 50 2177 4187 787 995 0.72-10 1.89-103 0.122 0.59 0.0002 0.0004 The shell and tube heat exchanger has the following...

  • A shell and tube heat exchanger with one shell pass and one tube pass will be...

    A shell and tube heat exchanger with one shell pass and one tube pass will be used to condense the steam to saturated liquid, which enters the shell side as a saturated vapor at 400 K. The tube side contains R-134a refrigerant with an inlet temperature of 300 K and a mean velocity of 0.4 m/s. The steam flow rate is 1.5 kg/s. The tubes are made from AISI 302 stainless steel and have a 1" nominal diameter (Di =...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT