Question

Please help me with this question

1. e (20 points) Assume the following instruction is to be executed using the 5-cycle pipeline architecture explained in class: LW R1, 500 (R2) Assume ReglRij 16, RegiR2) 10, and Mem 510 15. Fill out the following table, showing the microinstructions executed and the values of the registers at the end of each pipeline cycle. Use for registers whose values are not known in a cycle. Assume this is the only instruction entering into the pipeline, so no other instructions can affect the outcomes of the registers. Note that each entry of the table carries some points. Points will be deducted for leaving an entry blank Stage Micro. Insts. OUTPUT

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Hi,

Please find the answer to the question below:-

A1 R1 R2 ALU Output LMD Imm Micro Instructions A 16 16 16 150 150 10 10 10 10 10 2 Stage 2 ID 3 EX 4 MEM S WB 16 16 16 16 10l

Instruction fetch cycle Instruction decode/register fetch Execution/Effective address cycle Memory access/branch completion c

=================================================================================

Please let me know in case of any clarification.

Add a comment
Know the answer?
Add Answer to:
Please help me with this question Assume the following instruction is to be executed using the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • (60 points) The following instructions are executed on the 5-stage MIPS pipelined datapath. add r...

    Computer architecture help: (60 points) The following instructions are executed on the 5-stage MIPS pipelined datapath. add r5,r2, r1 lw r3, 4(r5) lw r2, 0(r2) or r3, r5, r3 sw r3, 0(r5) (a) (20 points) List the data hazards in the above code. For each data hazard identified, clearly mark the source and the destination. For example you can say, there is a data hazard from instruction X to instruction Y on register Z. (b) (20 points) Assume there is...

  • c. The classic five-stage pipeline MIPS architecture is used to execute the code fragments. Assume the...

    c. The classic five-stage pipeline MIPS architecture is used to execute the code fragments. Assume the followings: Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, Branches are resolved in the second stage of the pipeline and the architecture does not utilize any branch prediction mechanism Forwarding is fully supported Clock Cycle à 1 2 3 4 5 6 7 8 9 10 11 12...

  • help Question 11 The classic five-stage pipeline MIPS architecture is used to execute the code fragments...

    help Question 11 The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem. Assume the followings: • The architecture fully supports forwarding, • Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, • Branches are resolved in the third stage of the pipeline and the architecture does not utilize any branch prediction mechanism, • Register R4 is initially 200....

  • The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem....

    The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem. Assume the followings: The architecture fully supports forwarding, Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, Branches are resolved in the third stage of the pipeline and the architecture does not utilize any branch prediction mechanism, Register R4 is initially 100. L1:  lw    R1, 0(R4)   add   R3, R1, R2 sw   ...

  • 4.10 In this exercise, we examine how resource hazards, control hazards, and Instruction Set Arch...

    4.10 In this exercise, we examine how resource hazards, control hazards, and Instruction Set Architecture (ISA) design can affect pipelined execution. Problems in this exercise refer to the following fragment of MIPS code: sw r16,12(r6) lw r16,8(r6) beq r5,r4,Label # Assume r5!=r4 add r5,r1,r4 slt r5,r15,r4 Assume that individual pipeline stages have the following latencies: (NOTE THESE ARE DIFFERENT VALUES THAN THE ONES IN OTHER SIMILAR QUESTIONS) IF ID EX MEM WB 250ps 100ps 175ps 150ps 200ps 4.10.4 [10] <§4.5>...

  • Assume the MIPS instruction subset is redefinied to contain only the following instructions: 1. Assume that...

    Assume the MIPS instruction subset is redefinied to contain only the following instructions: 1. Assume that our MIPS instruction subset is redefined to contain only the following instructions: Instruction Instruction fetch Register read & ALU operation Data Memory Register write decode 0 ns R-format 2ns 1 ns lw ns l ns 2 ns 5 ns 1 ns ns 1 ns ns 0 0 bne The table lists the times required for each step within each instruction. Recall that with the...

  • The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem....

    The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem. Assume the followings: • The architecture fully supports forwarding, • Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, • Branches are resolved in the third stage of the pipeline and the architecture does not utilize any branch prediction mechanism, • Register R4 is initially 200. L1: lw lw...

  • Question 11 add sw addi bne The classic five-stage pipeline MIPS architecture is used to execute...

    Question 11 add sw addi bne The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem. Assume the followings • The architecture fully supports forwarding, • Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, • Branches are resolved in the third stage of the pipeline and the architecture does not utilize any branch prediction med • Register R4...

  • The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem....

    The classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem. Assume the followings: • The architecture fully supports forwarding, • Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, • Branches are resolved in the third stage of the pipeline and the architecture does not utilize any branch prediction mechanism, • Register R4 is initially 100. L1: lw add...

  • he classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem....

    he classic five-stage pipeline MIPS architecture is used to execute the code fragments in this problem. Assume the followings: The architecture fully supports forwarding, • Register write is done in the first half of the clock cycle; register read is performed in the second half of the clock cycle, • Branches are resolved in the third stage of the pipeline and the architecture does not utilize any branch prediction mechanism, • Register R4 is initially 100. Ll: lw add SW...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT