Question
length is 2m
Problem #04: A body with mass m 0.75 kg is attached to the end of a spring that is stretched 2 by a force of 98 N. It is set
0 0
Add a comment Improve this question Transcribed image text
Answer #1

Tota ニ 19.os s丁 k·ヒこビ 2 e3xas)x (rax) ー & 19.oss」 = 0-7273 Scr 808290 11 8819 = -24.880 dr 53) 09

Add a comment
Know the answer?
Add Answer to:
length is 2m Problem #04: A body with mass m 0.75 kg is attached to the...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the s...

    Ignore damping forces. A mass of 4 kg is attached to a spring with constant k- 16 N/m, then the spring is stretched 1 m beyond its natural length and given an initial velocity of 1 m/sec back towards its equilibrium position. Find the circular frequency ω, period T, and amplitude A of the motion. (Assume the spring is stretched in the positive direction.) A 7 kg mass is attached to a spring with constant k 112 N m. Given...

  • A body with mass of 200 g is attached to the end of a spring that...

    A body with mass of 200 g is attached to the end of a spring that is stretched 20 cm by a force of 9 N. At time t=0 the body is pulled 1 m to the left, stretching the spring, and set in motion with an initial velocity of 8 m/s to the left. (a) Find x(t) in the form C cos (@ot-a). (b) Find the amplitude and the period of motion of the body.

  • (1 point) A mass m = 4 kg is attached to both a spring with spring...

    (1 point) A mass m = 4 kg is attached to both a spring with spring constant k = 325 N/m and a dash-pot with damping constant c=4N s/m. The mass is started in motion with initial position Xo = 1 m and initial velocity vo = 9 m/s. Determine the position function z(t) in meters. x(t) = Note that, in this problem, the motion of the spring is underdamped, therefore the solution can be written in the form x(t)...

  • A 0.81-kg mass is attached to the end of a spring and set into oscillation on...

    A 0.81-kg mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass passes through the equilibrium position and the position of the mass at any time is shown in the drawing, x (m) 0.10 --- 04 16.0 -0.10 - - - - - - Determine the following. (a) amplitude A of the motion (b) angular...

  • A body of mass m = 3.00 kg is attached to a horizontal spring with force...

    A body of mass m = 3.00 kg is attached to a horizontal spring with force constant k = 100 N/m. The body is displaced 10.0 cm from its equilibrium position and released. For the resulting simple harmonic motion, find The amplitude

  • A mass m = 3 kg is attached to a spring with spring constant k =...

    A mass m = 3 kg is attached to a spring with spring constant k = 3 N/m and oscillates with simple harmonic motion along the x-axis with an amplitude A = 0.10 m. (a) What is the angular frequency  of this oscillation? (b) What is the period T and the frequency f of the oscillation? (c) If the phase constant  = 0, write down expressions for the displacement, velocity and acceleration of the mass as a function...

  • O. If a mass attached to a spring is raised xo ft and given an initial...

    O. If a mass attached to a spring is raised xo ft and given an initial veritical velocity of vo ft/sec, then the position x of the mass for time t in seconds and a positive constant w is given by x x0 Cos(wt ) +sin(wt). Suppose 3, xo = 5 ft, and vo = 10 ft/sec. Use the reduction formula to write x in the form r sin(wt + 6). Give &in radians rounded to the nearest thousandth. Find...

  • A mass m is attached to both a spring (with given spring constant k) and a...

    A mass m is attached to both a spring (with given spring constant k) and a dashpot (with given damping constant c). The mass is set in motion with initial position X, and initial velocity vo Find the position function x(t) and determine whether the motion is overdamped, critically damped, or underdamped. If it is underdamped, write the position function in the form x(t) =C, e-pt cos (0,t-a). Also, find the undamped position function u(t) = Cocos (0,0+ - )...

  • PART A PART B PART C PART D (1 point) A mass m = 4 kg...

    PART A PART B PART C PART D (1 point) A mass m = 4 kg is attached to both a spring with spring constant k = 197 N/m and a dash-pot with damping constant c=4N s/m. The mass is started in motion with initial position to 3 m and initial velocity vo = 6 m/s. Determine the position function r(t) in meters. x(1) Note that, in this problem, the motion of the spring is underdamped, therefore the solution can...

  • A 0.82 kg mass is attached to the end of a spring and set into oscillation...

    A 0.82 kg mass is attached to the end of a spring and set into oscillation on a horizontal frictionless surface by releasing it from a compressed position. The record of time is started when the oscillating mass passes through the equilibrium position and the position of the mass at any time is shown in the drawing. Determine the following. amplitude A of the motion m angular frequency omega rad/s spring constant k N/m speed of the object at t=...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT