Question

Is it possible to form a real image with a single negative (diverging) lens? Explain why...

Is it possible to form a real image with a single negative (diverging) lens? Explain why or why not.

0 0
Add a comment Improve this question Transcribed image text
Answer #1

No, It is not possible to get a real image using one diverging lens. Diverging lens always diverse the rays so the rays ever interact each other  to form any image. They will always form only virtual images.

Add a comment
Know the answer?
Add Answer to:
Is it possible to form a real image with a single negative (diverging) lens? Explain why...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • A diverging lens is used to get a virtual and magnified image of a real object....

    A diverging lens is used to get a virtual and magnified image of a real object. Where is the object possibly located? (A) Between the lens and its virtual focal point. (B) At the lens's virtual focal point (C) Between the lens's virtual focal point and its radius of curvature (2f). (D) At the radius of curvature (2f) (E) I is not possible to obtain the described image with a diverging lens

  • A lens produces a real image of a real object. a) Is the image inverted or upright? b) Is the lens diverging or conver...

    A lens produces a real image of a real object. a) Is the image inverted or upright? b) Is the lens diverging or converging? c) Is the image enlarged or reduced in size? d) If two convex lenses identical in size and shape aremanufactured from glass with two different indices of refraction,would the focal length of the lens with the greater index ofrefraction (lens 1) be larger or smaller than that of the otherlens (lens 2)?

  • A negative or diverging thin lens has a focal length of 10 cm. a) An object...

    A negative or diverging thin lens has a focal length of 10 cm. a) An object is placed 30 cm from the lens. Find the image distance and explain if the image is real or virtual. b) Explain if the image is upright or upside down and if it is smaller or larger than the object.

  • A diverging lens located in the y-z plane at x = 0 forms an image of...

    A diverging lens located in the y-z plane at x = 0 forms an image of an arrow at x = x2 = -14.1 cm. The image of the tip of the arrow is located at y = y2 = 6.3 cm. The magnitude of the focal length of the diverging lens is 28.8 cm. light image х 1 Ay 3) A converging lens of focal length fconverging = 9.02 cm is now inserted at x = x3 = -14.36...

  • The focal length of a diverging lens is negative. If f = −23 cm for a...

    The focal length of a diverging lens is negative. If f = −23 cm for a particular diverging lens, where will the image be formed of an object located 32 cm to the left of the lens on the optical axis? ______cm to the left of the lens? What is the magnification of the image? b. A small object is placed to the left of a convex lens and on its optical axis. The object is 29 cm from the...

  • When a diverging lens is held 13.0 cm above a line of print, as in Figure 26.29, the image is 5.0 cm beneath the lens. (a) Is the image real or virtual? (b) What is the focal length of the lens?

    When a diverging lens is held 13.0 cm above a line of print, as in Figure 26.29, the image is 5.0 cm beneath the lens. (a) Is the image real or virtual? (b) What is the focal length of the lens?

  • An object is placed 50.0cm in front of a lens. The image forms on the same...

    An object is placed 50.0cm in front of a lens. The image forms on the same side of the lens and is larger than the object. The image is (upright or inverted), the lens is (converging/diverging), image distance is (positive/negative), the image is (real, virtual) O inverted, diverging, positive, real upright, converging, positive, virtual inverted, converging, positive, virtual upright, converging, positive, real upright, converging, negative, virtual upright, converging, negative, real inverted, converging, positive, real O inverted, diverging, negative, real

  • An object is placed 50.0cm in front of a lens. The image forms on the same...

    An object is placed 50.0cm in front of a lens. The image forms on the same side of the lens and is larger than the object. The image is (upright or inverted), the lens is (converging/diverging), image distance is (positive/negative), the image is (real, virtual) O upright, converging, positive, virtual O inverted, converging, positive, real inverted, diverging, negative, real O upright, converging, negative, virtual O inverted, diverging, positive, real O inverted, converging, positive, virtual O upright, converging, positive, real O...

  • Question 18 (8 points) An object is placed 50.0cm in front of a lens. The image...

    Question 18 (8 points) An object is placed 50.0cm in front of a lens. The image forms on the same side of the lens and is larger than the object. The image is (upright or inverted), the lens is (converging/diverging), image distance is (positive/negative), the image is (real, virtual) upright, converging, negative, real inverted, converging, positive, virtual upright, converging, negative, virtual upright, converging, positive, virtual upright, converging, positive, real O inverted, converging, positive, real inverted, diverging, positive, real inverted, diverging,...

  • A real object is 13.6 cm to the left of a thin, diverging lens having a focal length of magnitude 24.5 cm.

    A real object is 13.6 cm to the left of a thin, diverging lens having a focal length of magnitude 24.5 cm. (a) is the sign of the focal length negative or positive? negative positive (b) Find the image distance. (c) Find the magnification. (d) State whether the image is real or virtual. real virtual (e) State whether the image is upright or inverted. upright inverted

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT