Question

Let W be a subspace of an n-dimensional vector space V over C, and let T:V V be a linear transformation. Prove that W is inva

0 0
Add a comment Improve this question Transcribed image text
Answer #1

Answer. Given that, 1. Let W be a subspace of an nodimensional Vector space v oven C, and Let Tiv> be a linear tang formatiHence, w is invaliant under T-AI for any AEC. inversly let w is invariant under T-AI for any dec In particular for d=0 renc

Add a comment
Know the answer?
Add Answer to:
Let W be a subspace of an n-dimensional vector space V over C, and let T:V...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Let V and W be finite dimensional vector spaces over R and T:V + W be...

    Let V and W be finite dimensional vector spaces over R and T:V + W be linear. Let V be a subspace of V and Wo = T(V). (Select ALL that are TRUE) If T is surjective then Vo = {v EV : there is w E Wo such that T(v) = w} If T is injective then dim(VO) = dim(W). dim(ker(T) n Vo) = dim(VO) - dim(Wo).

  • Q10.2 3 Points Let V and W be finite dimensional vector spaces over R and T:V...

    Q10.2 3 Points Let V and W be finite dimensional vector spaces over R and T:V + W be linear. Let Vo be a subspace of V and Wo = T(V). (Select ALL that are TRUE) If T is surjective then Vo = {v E V: there is w E Wo such that T(v) = w}. If T is injective then dim(V.) = dim(Wo). dim(ker(T) n ) = dim(V.) - dim(Wo). Save Answer

  • Let V and W be two vector spaces over R and T:V + W be a...

    Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S:W → V a generalized inverse of T if To SoT=T and SoToS = S. If V and W are finite dimensional, show that there exists a generalized inverse of T.

  • Let V and W be two vector spaces over R and T:V + W be a...

    Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W → V a generalized inverse of T if To SOT = T and SoTo S = S. If V and W are finite dimensional, show that there exists a generalized inverse of T.

  • Let V and W be finite dimensional vector spaces and let T:V → W be a...

    Let V and W be finite dimensional vector spaces and let T:V → W be a linear transformation. We say a linear transformation S :W → V is a left inverse of T if ST = Iy, where Iy denotes the identity transformation on V. We say a linear transformation S:W → V is a right inverse of T if TS = Iw, where Iw denotes the identity transformation on W. Finally, we say a linear transformation S:W → V...

  • Problem #6. Let V be a finite dimensional vector space over a field F. Let W...

    Problem #6. Let V be a finite dimensional vector space over a field F. Let W be a subspace of V. Define A(W) e Vw)Vw E W). Prove that A(W) is a subspace of (V).

  • Question 1. Let V be a finite dimensional vector space over a field F and let...

    Question 1. Let V be a finite dimensional vector space over a field F and let W be a subspace of Prove that the quotient space V/W is finite dimensional and dimr(V/IV) = dimF(V) _ dimF(W). Hint l. Start with a basis A = {wi, . . . , w,n} for W and extend it to a basis B = {wi , . . . , wm, V1 , . . . , va) for V. Hint 2. Our goal...

  • Let V and W be two vector spaces over R and T:V + W be a...

    Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W → V a generalized inverse of T if To SOT = T and SoTo S = S. If T is an isomorphism, show that T-1 is the unique generalized inverse of T.

  • Let V be a finite-dimensional complex vector space and let T from V to V be...

    Let V be a finite-dimensional complex vector space and let T from V to V be a linear transformation. Show that V is the direct sum of U and W where W and U are T-invariant subspaces and the restriction of T on U is nilpotent and the restriction of T on W is an isomorphism.

  • Q9 11 Points Let V and W be two vector spaces over R and T:V +...

    Q9 11 Points Let V and W be two vector spaces over R and T:V + W be a linear transformation. We call a linear map S: W → V a generalized inverse of Tif To SoT=T and SoTo S = S. Q9.3 4 Points If V and W are finite dimensional, show that there exists a generalized inverse of T. Please select file(s) Select file(s) Save Answer

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT