Question

R(S) C(s) G(s) Figure P3 G(S) K(s2 – 2s + 2) s(s + 1)(8 +2) Problem 4) (25 points) Consider the same unity feedback control s

0 0
Add a comment Improve this question Transcribed image text
Answer #1

1 2 3 4 5 6 7 8 9 10 11 12 M T W T F S S M T W DECEMBER 2011 JANUARY SATURDAY 17 15 16 17 18 19 20 21 22 23 24 29 30 31 WK 03SS 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 16 JANUARY FRIDAY Here 016-349 . WK 03 Gils) 81 2 3 4 5 6 7 8 9 10 11 12 F S S MTWTF 15 16 17 18 19 20 21 22 23 24 25 % M T W JANUARY THURSDAY a) 15 DECEMBER WK 03. 015-35M T W T F S S M T W T F S S 9 10 11 12 13 14 15 16 17 18 19 20 21 22 1 2 3 4 5 6 7 8 FEBRUARY 2015 © JANUARY WEDNESDAY 23 24DECEMBER 2014 JANUARY TUESDAY 2 M T W T F S S M T W T F S S 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Add a comment
Know the answer?
Add Answer to:
R(S) C(s) G(s) Figure P3 G(S) K(s2 – 2s + 2) s(s + 1)(8 +2) Problem...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • Dear lecturers, this is crucial. Please write the solution if you are sure. Thanks for your...

    Dear lecturers, this is crucial. Please write the solution if you are sure. Thanks for your effort! I will give thumbs up at first sight! R(s) C(s) G(s) Figure P3 where G(S) = K(S2 – 2s + 2) S(S + 1) (3 + 2) Problem 4) (25 points) Consider the same unity feedback control system given in Figure P3 and do the following. a. Determine the system type (type 0, type 1, type 2, etc.) and justify it. (05 points)...

  • A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating wi...

    A unity feedback system with the forward transfer function G(s)=K/(s+1)(s+3)(s+6) is operating with a closed-loop step response that has 15% overshoot. Do the following: a) Evaluate the steady-state error for a unit step input b) Design a PI control to reduce the steady-state error to zero without affecting its transient response c) Evaluate the steady-state error and overshoot for a unit step input to your compensated system A unity feedback system with the forward transfer function G(s) is operating with...

  • [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root lo...

    [7] Sketch the root locus for the unity feedback system whose open loop transfer function is K G(s) Draw the root locus of the system with the gain Kas a variable. s(s+4) (s2+4s+20) Determine asymptotes, centroid, breakaway point, angle of departure, and the gain at which root locus crosses ja-axis. A control system with type-0 process and a PID controller is shown below. Design the [8 parameters of the PID controller so that the following specifications are satisfied. =100 a)...

  • 1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in...

    1. Consider a unity feedback control system with the transfer function G(s) = 1/[s(s+ 2)] in the forward path. (a) Design a proportional controller that yields a stable system with percent overshoot less that 5% for the step input (b) Find settling time and peak time of the closed-loop system designed in part (a); (c) Design a PD compensator that reduces the settling time computed in (b) by a factor of 4 while keeping the percent overshoot less that 5%...

  • K and consider a PI s+4 A unity feedback system has an open loop transfer function G(s) [4] S+a controller Ge(s) S Sele...

    K and consider a PI s+4 A unity feedback system has an open loop transfer function G(s) [4] S+a controller Ge(s) S Select the values of K and a to achieve a) (i) Peak overshoot of about 20% (ii) Settling time (2% bases) ~ 1 sec b) For the values of K and a found in part (a), calculate the unit ramp input steady state error K and consider a PI s+4 A unity feedback system has an open loop...

  • Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s...

    Lag Compensator Design Using Root-Locus 2. Consider the unity feedback system in Figure 1 for G(s)- s(s+3(s6) Design a lag compensation to meet the following specifications The step response settling time is to be less than 5 sec. . The step response overshoot is to be less than 17% . The steady-state error to a unit ramp input must not exceed 10%. Dynamic specifications (overshoot and settling time) can be met using proportional feedback, but a lag compensator is needed...

  • PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with...

    PROBLEM: A unity feedback system with the forward transfer function K G(s) s(s+7) is operating with a closed-loop step response that has 15% overshoot. Do the following: a. Evaluate the steady-state error for a unit ramp input. b. Design a lag compensator to improve the steady-state error by a factor of 20. c. Evaluate the steady-state error for a unit ramp input to your compensated system. d. Evaluate how much improvement in steady-state error was realized.

  • Consider the closed loop system defined by the following block diagram. a) Compute the transfer function...

    Consider the closed loop system defined by the following block diagram. a) Compute the transfer function E(s)/R(s). b) Determine the steady state error for a unit-step 1. Controller ant Itly Ro- +- HI- 4단Toy , c) d) e) reference input signal. Determine the steady state error response for a unit-ramp reference input signal. Determine the locations of the closed loop poles of the system. Select system parameters kp and ki in terms of k so that damping coefficient V2/2 and...

  • 5. Consider a plant given by G()+2(s+1 in a un (s+2)(2s+1) 1n a unity feedback structure. (a) Det...

    5. Consider a plant given by G()+2(s+1 in a un (s+2)(2s+1) 1n a unity feedback structure. (a) Determine the system type and the steady state error with respect to a tracking polynomial reference input with a proportional controller, D(s)5. (b) Verify your result using MATLAB by plotting unit step and ramp responses. Use the Matlab command 1sim() for ramp input. Attach the code and the plots. 5. Consider a plant given by G()+2(s+1 in a un (s+2)(2s+1) 1n a unity...

  • help Consider the closed-loop system in Figure E5.19. where Gs)G 3s and H(s) -K (a) Determine...

    help Consider the closed-loop system in Figure E5.19. where Gs)G 3s and H(s) -K (a) Determine the closed-loop transfer function T(s) Y(s)/R(s). (b) Determine the steady-state error of the closed-loop system response to a unit ramp input, R(s) 1/s (c) Select a value for Ka so that the steady-state error of the system response to a unit step input, R(s)1/s, is zero.

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT