Question

4.3 Consider the silicon PN junction in Fig. 4-47 P+ 1.2 um 0.4 um FIGURE 4-47 (a) Na 5 x 1016cm-3 in the P region and Nd1x107em-3 in the N region, under increasing reverse bias, which region (N or P) wl become completely depleted first? What is the reverse bias at this condition? (Hint: use NapNr The doping densities of Pt and N+ are immaterial). (b) Repeat part (a) with Na- x106cm and Nd-1x 10cm3. 16m-3 (c) What are the small-signal capacitances (Flcm2) at the bias conditions in (a) and (b)?

Please give me the answers with numerical answer. Not just the formula.

0 0
Add a comment Improve this question Transcribed image text
Know the answer?
Add Answer to:
Please give me the answers with numerical answer. Not just the formula. 4.3 Consider the silicon...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for? Ask your own homework help question. Our experts will answer your question WITHIN MINUTES for Free.
Similar Homework Help Questions
  • 2. Suppose you have a silicon wafer containing a p n junction. Design the doping level on the n-side so that the rev...

    2. Suppose you have a silicon wafer containing a p n junction. Design the doping level on the n-side so that the reverse breakdown voltage is 45 V. and the depletion widths (on the n-side and on the p-side) 3. Calculate the built-in voltage 19 in a silicon pn Junction with Na = 5x101 /cc and Nd = 1 x 10 /cc given that the junction is reverse biased at 5 V. /mi 2. Suppose you have a silicon wafer...

  • THE REVERSE BIAS VOLTAGE APPLIED TO SILICON PN JUNCTION DIODE IS 4V, DOPING CONCENTRATION Na is...

    THE REVERSE BIAS VOLTAGE APPLIED TO SILICON PN JUNCTION DIODE IS 4V, DOPING CONCENTRATION Na is 10^17 cm^-3, Nd = 10^16 cm^-3, ni = 1.3 x 10^9 cm^-3, temperature T = 273 k find the width of depletion region with the applied reverse voltage please check your answer that it is correct please it is a humble request

  • 1.You have a piece of intrinsic silicon. explain how to convert it to n-type. 2.The depletion...

    1.You have a piece of intrinsic silicon. explain how to convert it to n-type. 2.The depletion region is a region in the pn junction that is depleted from................. 3.Decreasing the amount of doping to an intrinsic semiconductor, causes the resistance of the doped silicon to................ 4.What is a p-type semiconductor? 5.As the amount of doping to an intrinsic semiconductor increases, the resistance of the doped silicon................

  • Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T...

    Consider a silicon pn step junction diode with NA-1x1018 cm3 and No 1x1017cm-3, maintained at T 300K. The minority carrier lifetimes in the p-side and n-side are τη-10-8 s and Tp-10-7 s, respectively. a) Calculate the minority carrier densities at the edges of the depletion region when the applied voltage (VA) is 0.6 V. of the junction, for the applied bias voltage of part (a) densities are equal in magnitude, for the applied voltage of part (a). b) Sketch the...

  • 3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd ...

    3. A silicon step junction has uniform impurity doping concentrations of N. 5 x 1015 cm-3 and Nd = 1 x 1015 cm-, and a cross-sectional area of A-|0-4 cm2. Let tao -0.4 s and tpo 0.1 us. Consider the geometry in Figure.Calculate (a) the ideal reverse saturation current due to holes, (b) the ideal reverse saturation current due to electrons, (c) the hole concentration at a, if V V and (d) the electron current at x = x" +...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p side (see the figure above). b) (5 points) Calculate the...

  • 2. (60 pts) Consider a one-sided silicon PN diode. The p-side is degenerately doped (and you...

    2. (60 pts) Consider a one-sided silicon PN diode. The p-side is degenerately doped (and you can assume Ep = Ey for simplicity). The doping concentration on the n-side is Np for 0<x <too. The depletion width on the n-side is xn. Use the depletion approximation. p* ND x 0 From here, you assume that Np is given by 4x1015 cm. (h) (7 pts) What is the maximum electric field in depletion region when Va=-3 V? (i) (8 pts) As...

  • please answer 7.17, i put 7.10 for reference. Consider a uniformly doped silicon pn junction with...

    please answer 7.17, i put 7.10 for reference. Consider a uniformly doped silicon pn junction with doping concentrations N 2 x 7.10 = 1017 cm3and N = 4 X 1016 cm3. (a) Determine Vhi at T = 300 K. (b) Determine the temperature at which Vhi increases by 2 percent. (Trial and error may have to be used.) 7.17 Consider the pn junction described in Problem 7.10 for T = 300 K. The cross- sectional area of the junction is...

  • Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority ...

    Can someone help solve this question step by step? Thanks! Problem 4 (25 points) Consider a silicon pn junction at T-300 K, NA-ND- 1x101° cm3. The minority carrier lifetimes are τ n-0.01 μs and τ p-0.01 us. The junction is forwardbiased with Va 0.6V. The minority carrier diffusion coefficients are Dn-20 cm s, Dp 10 cm Is. n.-1.5x 1010 cm-3 Depletion region n-type p-type a) (10 points) Calculate the excess electron concentration as a function of x in the p...

  • P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x...

    P3. For an ideal abrupt silicon (Si) P*N diode with doping concentrations Na = 1 x 107 cm3 and N 1 x 105 cm. (a) Find the stored minority carriers density in the N-side neutral region (infinitely long comparing with Lp and Ln) when a forward bias of 1 V is applied. (b) Calculate the hole current density in the region of (a) at x, 0. (Assume the average diffusion length of hole is 5 um the average carrier life...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT