Question

1.You have a piece of intrinsic silicon. explain how to convert it to n-type. 2.The depletion...

1.You have a piece of intrinsic silicon. explain how to convert it to n-type.

2.The depletion region is a region in the pn junction that is depleted from.................

3.Decreasing the amount of doping to an intrinsic semiconductor, causes the resistance of the doped silicon to................

4.What is a p-type semiconductor?

5.As the amount of doping to an intrinsic semiconductor increases, the resistance of the doped silicon................

0 0
Add a comment Improve this question Transcribed image text
Request Professional Answer

Request Answer!

We need at least 10 more requests to produce the answer.

0 / 10 have requested this problem solution

The more requests, the faster the answer.

Request! (Login Required)


All students who have requested the answer will be notified once they are available.
Know the answer?
Add Answer to:
1.You have a piece of intrinsic silicon. explain how to convert it to n-type. 2.The depletion...
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Similar Homework Help Questions
  • 2. Suppose you have a silicon wafer containing a p n junction. Design the doping level on the n-side so that the rev...

    2. Suppose you have a silicon wafer containing a p n junction. Design the doping level on the n-side so that the reverse breakdown voltage is 45 V. and the depletion widths (on the n-side and on the p-side) 3. Calculate the built-in voltage 19 in a silicon pn Junction with Na = 5x101 /cc and Nd = 1 x 10 /cc given that the junction is reverse biased at 5 V. /mi 2. Suppose you have a silicon wafer...

  • (iv) [2 Marks] A pn-junction has a built-in potential voltage of 1V across the junction. The width of the depletion reg...

    (iv) [2 Marks] A pn-junction has a built-in potential voltage of 1V across the junction. The width of the depletion region is 1um. The acceptor doping is NA 2 x 1015cm-3 in the P-side and a donor doping is Np = 8 x 1015cm-3 on the N-side. If the reference position x 0 is the edge of the depletion region on the P-side and the P region is on the left of the N region then where does the maximum...

  • 5. For the following Metal-Semiconductor Contacts, calculate the built-in bias and depletion widt...

    5. For the following Metal-Semiconductor Contacts, calculate the built-in bias and depletion width, and identify the type of contact. Assume 0V bias a. Pt-Silicon (Na b. Ti-Silicon (Nd c. Cu- Silicon (Nd 1e13, Nd 1e3) le 16, Na 1e2) 1e20, Na- 1e3) 6. Sketch a Cross-Section of the following junctions, label the charge of the depletion region and polarity of forward bias. Choose the proper semiconductor and metal for each junction. N-type Tunnel MS Junction P-type Tunnel MS Junction PN...

  • 1. In the semiconductor materials fabrication process, Antimony material is injected into the silicon wafer. Name...

    1. In the semiconductor materials fabrication process, Antimony material is injected into the silicon wafer. Name the type of semiconductor product and explain the mechanism involved with the schematic diagrams. 2. Describe the formation of the depletion region and the potential barrier of the PN junction (a) without bias (b) forward bias and (c) reversed bias. 3.Explain on the cause and origin of the high reverse bias current after breakdown of a PN junction. 4.In bipolar Junction transistor, (a) Why...

  • Assume a p-n step junction in silicon wi concentration of 2x1016,c? and the n-type material doped...

    Assume a p-n step junction in silicon wi concentration of 2x1016,c? and the n-type material doped at 3X10-s,cm3 The intrinsic carrier density is 1.25X101°/cm and all dopants are fully ionized Assume that the effective density of states for silicon is 3.3x10 cm3 for the conduction band and 1.75x101 cm for the valence band. Assume that the temperature is 300K and silicon relative permittivity of 11.7 a. Compute the hole concentration on the n-side and electron concentration th the p-type material...

  • 2. (60 pts) Consider a one-sided silicon PN diode. The p-side is degenerately doped (and you...

    2. (60 pts) Consider a one-sided silicon PN diode. The p-side is degenerately doped (and you can assume Ep = Ey for simplicity). The doping concentration on the n-side is Np for 0<x <too. The depletion width on the n-side is xn. Use the depletion approximation. p* ND x 0 From here, you assume that Np is given by 4x1015 cm. (h) (7 pts) What is the maximum electric field in depletion region when Va=-3 V? (i) (8 pts) As...

  • 2 photos The depletion layer width for different junctions is given by the following equations: w...

    2 photos The depletion layer width for different junctions is given by the following equations: w = het w = jane te pare VO w = (1280XL) Intrinsic carrier concentration of silicon, n., is 9.65 x 10 cm 1) The expressions for minority carrier diffusion length and diffusion coefficients and thermal velocity are as follows (for n-and p-type materials). L. - (Dpt) La = (Dat)* Và = To 1/NA in p-type material 1 - 1/(RexNA), where Re is the recombination...

  • A silicon PN junction diode is constructed using N-type silicon in which the Fermi level is...

    A silicon PN junction diode is constructed using N-type silicon in which the Fermi level is 100 meV below the conduction band edge and P-type silicon in which the Fermi level is 120 meV above the valence band edge a) What are the majority and minority carrier concentrations on each side of the junction under thermal equilibrium? b) What is the value of the built-in voltage? c) Determine the width of the depletion region on both sides of the junction...

  • If we have silicon at 300K with 10 microns of p-type doping of 5.38*10 17/cc and 10 microns of n-...

    If we have silicon at 300K with 10 microns of p-type doping of 5.38*10 17/cc and 10 microns of n-type doping 1000 times less, what is the total resistance in ohms outside the depletion region on the n-type side and at zero bias (use three significant digits and exponential notation). The diode is square with an edge length of 52 microns. Assume p and n mobilities are 500 & 1 500 стл2/(V*s) respectively. If we have silicon at 300K with...

  • A metal, with a work function Ф,,-41 V, is deposited on an n-type silicon semiconductor with elec...

    A metal, with a work function Ф,,-41 V, is deposited on an n-type silicon semiconductor with electron affinity 4.0V and energy bandgap 1.12eV. Assuming no interface states exist at the junction and operation temperature at 300K. Effective density of states in conduction band (N 3.22 x 10 cm3. Effective density of states in valence band (N) 1.83 x 10" cm 193 A) Sketch the energy band diagram for zero bias for the case when no space charge region exists at...

ADVERTISEMENT
Free Homework Help App
Download From Google Play
Scan Your Homework
to Get Instant Free Answers
Need Online Homework Help?
Ask a Question
Get Answers For Free
Most questions answered within 3 hours.
ADVERTISEMENT
ADVERTISEMENT
ADVERTISEMENT